• Title/Summary/Keyword: Haar system

Search Result 139, Processing Time 0.029 seconds

New Vehicle Verification Scheme for Blind Spot Area Based on Imaging Sensor System

  • Hong, Gwang-Soo;Lee, Jong-Hyeok;Lee, Young-Woon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Ubiquitous computing is a novel paradigm that is rapidly gaining in the scenario of wireless communications and telecommunications for realizing smart world. As rapid development of sensor technology, smart sensor system becomes more popular in automobile or vehicle. In this study, a new vehicle detection mechanism in real-time for blind spot area is proposed based on imaging sensors. To determine the position of other vehicles on the road is important for operation of driver assistance systems (DASs) to increase driving safety. As the result, blind spot detection of vehicles is addressed using an automobile detection algorithm for blind spots. The proposed vehicle verification utilizes the height and angle of a rear-looking vehicle mounted camera. Candidate vehicle information is extracted using adaptive shadow detection based on brightness values of an image of a vehicle area. The vehicle is verified using a training set with Haar-like features of candidate vehicles. Using these processes, moving vehicles can be detected in blind spots. The detection ratio of true vehicles was 91.1% in blind spots based on various experimental results.

Hands-free Robot Control System Using Mouth Tracking (입 추적을 이용한 로봇 원격 제어 시스템)

  • Wang, Liang;Xu, Yongzhe;Ahmed, Minhaz;Rhee, Phill-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.405-408
    • /
    • 2011
  • In this paper, we propose a robot remote control system based on mouth tracking. The main idea behind the work is to help disabled people who cannot operate a joystick or keyboard to control a robot with their hands. The mouth detection method in this paper is mainly based on the Adaboost feature detection approach. By using the proposed new Haar-like features for detecting the corner of mouth, the speed and accuracy of detection are improved. Combined with the Kalman filter, a continuous and accurate mouth tracking has been achieved. Meanwhile, the gripping commands of the robot manipulator were also achieved by the recognition of the user.s mouth shape, such as 'pout mouth' or 'grin mouth'. To assess the validity of the method, a mouth detection experiment and a robot cargo transport experiment were applied. The result indicated that the system can realize a quick and accurate mouse tracking; and the operation of the robot worked successfully in moving and bringing back items.

A Study of Attendance Check System using Face Recognition (얼굴인식을 이용한 출석체크 시스템 연구)

  • Hyeong-Ju, Lee;Yong-Wook, Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1193-1198
    • /
    • 2022
  • As unmanned processing systems emerged socially due to the rapid development of modern society, a face recognition attendance management system using Raspberry Pi 4 was studied and conceived to automatically analyze and process images and produce meaningful results using OpenCV. Based on Raspberry Pi 4, the software is designed with Python 3 and consists of technologies such as OpenCV, Haarcascade, Kakao API, and Google Drive, which are open sources, and can communicate with users in real time through Kakao API for face registration and face recognition.

Presentation control of the computer using the motion identification rules (모션 식별 룰을 이용한 컴퓨터의 프레젠테이션 제어)

  • Lee, Sang-yong;Lee, Kyu-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.586-589
    • /
    • 2015
  • A computer presentation system by using hand-motion identification rules is proposed. To identify hand motions of a presenter, a face region is extracted first using haar classifier. A motion status(patterns) and position of hands is discriminated using the center of gravities of user's face and hand after segmenting the hand area on the YCbCr color model. User's hand is applied to the motion detection rules and then presentation control command is then executed. The proposed system utilizes the motion identification rules without the use of additional equipment and it is then capable of controlling the presentation and does not depend on the complexity of the background. The proposed algorithm confirmed the stable control operation via the presentation of the experiment in the dark illumination range of indoor atmosphere (lx) 15-20-30.

  • PDF

A NUMBER SYSTEM IN ℝn

  • Jeong, Eui-Chai
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.945-955
    • /
    • 2004
  • In this paper, we establish a number system in $R^n$ which arises from a Haar wavelet basis in connection with decompositions of certain Cuntz algebra representations on $L^2$( $R^n$). Number systems in $R^n$ are also of independent interest [9]. We study radix-representations of $\chi$ $\in$ $R^n$: $\chi$:$\alpha$$_{ι}$ $\alpha$$_{ι-1}$$\alpha$$_1$$\alpha$$_{0}$$\alpha$$_{-1}$ $\alpha$$_{-2}$ … as $\chi$= $M^{ι}$$\alpha$$_{ι}$ $\alpha$+…M$\alpha$$_1$$\alpha$$_{0}$$M^{-1}$ $\alpha$$_{-1}$$M^{-2}$ $\alpha$$_{-2}$ +… where each $\alpha$$_{k}$ $\in$ D, and D is some specified digit set. Our analysis uses iteration techniques of a number-theoretic flavor. The view-point is a dual one which we term fractals in the large vs. fractals in the small,illustrating the number theory of integral lattice points vs. fractions.s vs. fractions.

HW/SW Co-design of a Visual Driver Drowsiness Detection System

  • Lai, Kok Choong;Wong, M.L. Dennis;Islam, Syed Zahidul
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.1
    • /
    • pp.31-41
    • /
    • 2013
  • There have been various recent methods proposed in detecting driver drowsiness (DD) to avert fatal accidents. This work proposes a hardware/software (HW/SW) co-design approach in implementation of a DD detection system adapted from an AdaBoost-based object detection algorithm with Haar-like features [1] to monitor driver's eye closure rate. In this work, critical functions of the DD detection algorithm is accelerated through custom hardware components in order to speed up processing, while the software component implements the overall control and logical operations to achieve the complete functionality required of the DD detection algorithm. The HW/SW architecture was implemented on an Altera DE2 board with a video daughter board. Performance of the proposed implementation was evaluated and benchmarked against some recent works.

  • PDF

Asymptotic Behavior of the output SINR at MMSE receivers in a MIMO MC-CDMA system (MIMO MC-CDMA시스템에서 MMSE 수신기 출력의 점근적 양상)

  • Kim, Kyeong-Yeon;Shim, Sei-Joon;Ham, Jae-Sang;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.10-16
    • /
    • 2007
  • This paper analyzes the output signal-to-interference-plus-noise ratio (SINR) for a multiple-input-multiple-output (MIMO) multicarrier code division multiple access (MC-CDMA) system with minium mean square error receivers. A previous work of a single antenna MC-CDMA system cannot directly applied to a MIMO MC-CDMA system because some assumptions for single antenna do not match the case of multiple antenna. Therefore this paper expands the concept of freeness to MIMO system by using the Marcenko Pastur law. The analysis shows that the output SINR asymptotically converges to a deterministic value and finds the value on the assumption of freeness. From the analysis, it is easy to calculate bit error rate and the calculation is verified by simulations.

EAR: Enhanced Augmented Reality System for Sports Entertainment Applications

  • Mahmood, Zahid;Ali, Tauseef;Muhammad, Nazeer;Bibi, Nargis;Shahzad, Imran;Azmat, Shoaib
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6069-6091
    • /
    • 2017
  • Augmented Reality (AR) overlays virtual information on real world data, such as displaying useful information on videos/images of a scene. This paper presents an Enhanced AR (EAR) system that displays useful statistical players' information on captured images of a sports game. We focus on the situation where the input image is degraded by strong sunlight. Proposed EAR system consists of an image enhancement technique to improve the accuracy of subsequent player and face detection. The image enhancement is followed by player and face detection, face recognition, and players' statistics display. First, an algorithm based on multi-scale retinex is proposed for image enhancement. Then, to detect players' and faces', we use adaptive boosting and Haar features for feature extraction and classification. The player face recognition algorithm uses boosted linear discriminant analysis to select features and nearest neighbor classifier for classification. The system can be adjusted to work in different types of sports where the input is an image and the desired output is display of information nearby the recognized players. Simulations are carried out on 2096 different images that contain players in diverse conditions. Proposed EAR system demonstrates the great potential of computer vision based approaches to develop AR applications.

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

CCTV Based Gender Classification Using a Convolutional Neural Networks (컨볼루션 신경망을 이용한 CCTV 영상 기반의 성별구분)

  • Kang, Hyun Gon;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1943-1950
    • /
    • 2016
  • Recently, gender classification has attracted a great deal of attention in the field of video surveillance system. It can be useful in many applications such as detecting crimes for women and business intelligence. In this paper, we proposed a method which can detect pedestrians from CCTV video and classify the gender of the detected objects. So far, many algorithms have been proposed to classify people according the their gender. This paper presents a gender classification using convolutional neural network. The detection phase is performed by AdaBoost algorithm based on Haar-like features and LBP features. Classifier and detector is trained with data-sets generated form CCTV images. The experimental results of the proposed method is male matching rate of 89.9% and the results shows 90.7% of female videos. As results of simulations, it is shown that the proposed gender classification is better than conventional classification algorithm.