• 제목/요약/키워드: HPLC solvent

검색결과 486건 처리시간 0.028초

Pesticide Multiresidues Analysis of Environmental-friendly Agricultural Soils by the Complex Cleanup Method of Accelerated Solvent Extraction (ASE) and Solid Phase Extraction (SPE) (ASE 및 SPE 복합정제법을 이용한 친환경농업토양의 다성분잔류농약 분석)

  • Moo, Kyung-Mi;Park, Jin-Woo;Lee, Young-Guen;Choi, Young-Whan
    • Journal of agriculture & life science
    • /
    • 제45권5호
    • /
    • pp.73-80
    • /
    • 2011
  • Fifty substances of pesticide were selected for analysis through the historical investigation of pesticides detected from environmental-friendly agricultural soil, and the environmental-friendly agricultural soils in Gyeongnam area were collected and then were accepted Anve (accelerated solvent extraction) and SPve (solid-phase extraction) as multiresidue extraction and clean up methods suitable to the soils. The pesticide residues were analyzed by using GC/vCD/NPD, HPLC/UV/FL, GC/MSD, or HPLC/MSD. 50 kinds of pesticides for the soils were an average of 95.5% from retrieval ratio of the 72 to 118% range, and the average of 3.0% for CV (%). Among 40 samples of soil, 20 components were detected from pesticide residues of 21 samples, and average amounts detected for these components were 0.035 for endosulfan, 0.043 for ethoprophos, 0.020 for chlorpyrifos, 0.023 for chlorfenapyr, 0.047 for flufenoxuron, 0.070 for fenvalerate, 0.266 for cypermethrin, 0.016 for lufenuron, 0.022 for bifenthrin, 0.025 for fenobucarb/BPMC, 0.043 for difenoconazole, 0.059 for fenarimol, 0.020 for kresoxim-methyl, 0.026 for tetraconazole, 0.039 for isoprothiolane, 0.017 for iprobenfos, 0.014 for nolrimol, 0.156 for fluquinconazole, 0.047 for tebuconazole, and 0.045 mg/kg for oxadiazon. Therefore it is infered that the establishment of pesticide residues limit for environmental-friendly agricultural soil is needed as soon as possible.

Standardization of Eleutherococcus species and HPLC Method Validation for Quantitative Analysis (정량분석을 통한 Eleutherococcus species의 HPLC 분석법 검증과 표준화)

  • Song, Mi-Kyung;Kim, Mi-Yeon;Kim, Ho-Cheol
    • The Korea Journal of Herbology
    • /
    • 제26권1호
    • /
    • pp.103-110
    • /
    • 2011
  • Objective : For the standardization and quality control of eleutheroside E in Eleutherococcus species, HPLC analysis was performed and eleutherosdie E content was compared in 23 kinds of Eleutherococcus species collected from Korea and China. Methods : The content of eleutheroside E in stem bark of Eleutherococcus species collected from Korea and China were analyzed by HPLC. 0.5% phosphoric acid and acetonitrile was used as mobile solvent. Validation of HPLC analysis method was confirmed by analyzing specificity, linearity, precision and accuracy following ICH guideline. Results : Content of eleutheroside E was determined to be 1.0-1.6% and 0.5-0.8% in Korean and Chinese E. senticosus, respectively. Content of eleutheroside E in E. sessiliflorus was 0.7-1.1% and 0.2-0.4% respectively in Korean and Chinese origin. All calibration curves showed good linear regression. The method showed good precision and accuracy with intra-day and inter-day variations of 0.880-3.442% (RSD) and 0.606-3.328% (RSD), respectively, and average recovery was of 0.141-1.363% (RSD), for the eleutheroside E analyzed. Conclusion : These results might be used to establish a criterion of eleutheroside E in Eleutherococcus species.

Separation of Glabridin from Licorice by RP-HPLC (RP-HPLC를 이용한 감초에서 Glabridin의 분리)

  • 정용안;이광진;권문주;노경호
    • KSBB Journal
    • /
    • 제18권5호
    • /
    • pp.408-411
    • /
    • 2003
  • By reversed-phase high-performance liquid chromatography, the extraction and separation of glabridin by from licoricce root was performed in this work. The column efficiencies and resolutions of glabridin were investigated with mobile phase composition on the reversed-phase chromatographic system. The glabridin collected from licorice root was identified by LC/MS. The mobile phase used to extract glabridin were composed of ethanol, methanol, acetone, and ethyl acetate. For one-hour ultrasonic extraction with solvent of ethyl acetate, the favorable content of glabridin was obtained as 1.26g/kg. The glabridin was well separated in the mobile phase composition of 50/50 vol. % (acetonitrile/water).

Studies on Pretreatment for Analysis of Pesticides by Using HPLC and GC (HPLC 및 GC에 의한 농약분석에서 전처리에 대한 연구)

  • Oh, Bo Young;Bae, Jun Hyun;Kang, Jun Gil;Kim, Youn Doo
    • Journal of the Korean Chemical Society
    • /
    • 제43권6호
    • /
    • pp.663-669
    • /
    • 1999
  • For determination of separated pesticides by using GC and HPLC, liquid-liquid extraction(LLE) and solid phase extraction(SPE) have been carried out to separate and concentrate the organophophorous pesticides such as Diazinon, Fenitrothion, Phosmet, Phosalon and EPN in environmental water samples. ln determination of pesticides by HPLC/UV, SPE has resulted in higher recovery and more precision than LLE, while in determination of pesticides by GC/FPD, vice versa. HPLC/UV after the pretreatment process of sample by solid phase extraction (SPE-HPLC/UV) has suggested the possibility of determination of pesticides ppb level. ln comparison of detection limit, both SPE-HPLC/UV and LLE-GC/FPD are reasonably suitable for analysis of residue pesticides. ln the respect of the rapidity and the solvent required, SPE-HPLC/UV method has proven to be superior to LLE-GC/FPD.

  • PDF

Determination of Non-Steroidal Anti-Inflammatory Drugs in Human Urine Sample using HPLC/UV and Three Phase Hollow Fiber-Liquid Phase Microextraction (HF-LPME)

  • Cha, Yong Byoung;Myung, Seung-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3444-3450
    • /
    • 2013
  • Three phase hollow fiber-liquid phase microextraction (HF-LPME), which is faster, simpler and uses a more environmentally friendly sample-preparation technique, was developed for the analysis of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in human urine. For the effective simultaneous extraction/concentration of NSAIDs by three phase HF-LPME, parameters (such as extraction organic solvent, pH of donor/acceptor phase, stirring speed, salting-out effect, sample temperature, and extraction time) which influence the extraction efficiency were optimized. NSAIDs were extracted and concentrated from 4 mL of aqueous solution at pH 3 (donor phase) into dihexyl ether immobilized in the wall pores of a porous hollow fiber, and then extracted into the acceptor phase at pH 13 located in the lumen of the hollow fiber. After the extraction, 5 ${\mu}L$ of the acceptor phase was directly injected into the HPLC/UV system. Simultaneous chromatographic separation of seven NSAIDs was achieved on an Eclipse XDB-C18 (4.6 mm i.d. ${\times}$ 150 mm length, 5 ${\mu}m$ particle size) column using isocratic elution with 0.1% formic acid and methanol (30:70) at a HPLC-UV/Vis system. Under optimized conditions (extraction solvent, dihexyl ether; $pH_{donor}$, 3; $pH_{acceptor}$, 13; stirring speed, 1500 rpm; NaCl salt, 10%; sample temperature, $60^{\circ}C$; and extraction time, 45 min), enrichment factors (EF) were between 59 and 260. The limit of detection (LOD) and limit of quantitation (LOQ) in the spiked urine matrix were in the concentration range of 5-15 ng/mL and 15-45 ng/mL, respectively. The relative recovery and precision obtained were between 58 and 136% and below 15.7% RSD, respectively. The calibration curve was linear within the range of 0.015-0.96 ng/mL with the square of the correlation coefficient being more than 0.997. The established method can be used to analyse of NSAIDs of low concentration (ng/mL) in urine.

Isolation of 3,4-Dihydroxycinnamic Acid with Antimicrobial Activity from Bark of Aralia elata (두릅수피에서 항미생물 활성을 갖는 3,4-Dihydroxycinnamic Acid의 분리)

  • Ma, Seung-Jin;Kuk, Ju-Hee;Ko, Byoung-Seob;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • 제28권3호
    • /
    • pp.600-603
    • /
    • 1996
  • The methanol extract of Aralia elata bark showed antimicrobial activities against bacteria, yeast and fungi. The active components were successively purified with solvent fractionation, silica gel adsorption column chromatography, Sephadex LH-20 column chromatography, silica gel partition column chromatography and HPLC. The active substances were separated with HPLC where 1% acetic acid-MeOH (60 : 40, v/v) was used as mobile phase. The isolated active substance ($t_r$ 17.1 min) was identified as trans-3,4-dihydroxycinnamic acid by $MS,\;^1H-NMR\;and\;^13C-NMR$.

  • PDF

Isolation and Characterization of Allelopathic Substances from Sorghum Stem (수수 줄기에 함유(含有)된 타감물질(他感物質)의 분리(分離) 및 특성(特性) 구명(究明))

  • Kim, S.Y.;De Datta, S.K.;Robles, R.P.;Kim, K.U.;Lee, S.C.;Shin, D.H.
    • Korean Journal of Weed Science
    • /
    • 제14권2호
    • /
    • pp.156-162
    • /
    • 1994
  • To better understand the exact nature of the major toxic compound responsible for phytotoxicity of sorghum stem, the most toxic compound from the stem extract was isolated by rapid chromatography and subsequently purified by thin-layer chromatography(TLC) and high pressure liquid chromatography(HPLC). Of the eight fractions isolated by rapid chromatography, the fraction with solvent combinations of butanol (8) : acetic acid (1) : water (1) had the highest toxicity. Further separation of the fraction by TLC in a solvent mixture of butanol (24) : acetic acid (16.4) : water (7) : propanol (1) showed that the spot with an $R_f$ 0.71 had one major peak with retention time of 20.40 minutes. Upon subjecting gas chromatography and the HPLC fraction to the mass spectrometry, the toxic compound is probably one of the four compounds ; 1-methyl-1-(2-propynyl)-hydrazine, 1-aziridineethanol, 5-chloro-2-pentanone, and 2-(methylseleno)-ethanamine.

  • PDF

Phenanthrene Derivatives, 3,5-Dimethoxyphenanthrene-2,7-diol and Batatasin-I, as Non-Polar Standard Marker Compounds for Dioscorea Rhizoma

  • Yoon, Kee-Dong;Yang, Min-Hye;Nam, Sang-Il;Park, Ju-Hyun;Kim, Young-Choong;Kim, Jin-Woong
    • Natural Product Sciences
    • /
    • 제13권4호
    • /
    • pp.378-383
    • /
    • 2007
  • Phenathrene derivatives, such as batatasins, are well-known constituents in Dioscorea Rhizoma. Although phenanthrenes have been reported as representative compounds in this plant, standard markers for quality control have been focused on the polar constituents (saponins and purine derivatives). Herein, simple, rapid and reliable HPLC method was developed to determine 3,5-dimethoxyphenanthrene-2,7-diol (DMP) and batatasin-I (BA-I) as non-polar standard maker compounds of Dioscorea Rhizoma. DMP and BA-I were analyzed under optimized HPLC conditions [column: Columbus $5{\mu}$ C18 100A ($30{\times}4.6mm$ i.d., $5{\mu}m$; mobile phase: $H_2O$ with 0.025% $CH_3COOH$ (v/v) for solvent A and $CH_3CN$ with 0.025% $CH_3COOH$ (v/v) for solvent B, gradient elution; flow rate: 2 mL/min; detection: 260 nm), and each experiment was finished within 13 min. Good linearity was achieved in the range from 0.5 to $10.0{\mu}g/mL$ for each compound, and intra- and inter-day precision were in the acceptable levels. The recovery test were performed with three different Dioscorea Rhizoma samples (D. opposita, D. batatas and D. japonica), and showed its accuracy values in the range of 97.2 - 102.8% for three different concentrations of DMP and BA-I. The content levels of DMP and BA-I were ranged under 0.0020%. These results demonstrated that amounts of DMP and BA-I are easily determined with conventional HPLC-UV-DAD method although the content levels were lower than those of saponins and allantoin in Dioscorea Rhizoma. This HPLC method could be used for quality control of various Dioscorea preparations.

Separation of 20(R&S) Prosapogenin Isomers of Ginsenoside-$Rg_2$ and -$Rg_3$ from Ginseng Saponins by Reversed-Phase High Performance Liquid Chromatography (인삼 사포닌에서 Ginsenoside-$Rg_2$와 -$Rg_3$의 이성질체인 20(R&S) Prosapogenin들의 역상 고속 액체 크로마토그래피에 의한 분리)

  • Jeong, Seung-Il;Kim, Cheon-Suk;Lee, Yong-Gu;Lee, Ho-Sup;Kim, Il-Kwang
    • Analytical Science and Technology
    • /
    • 제11권5호
    • /
    • pp.404-408
    • /
    • 1998
  • Using a reversed-phase high performance liquid chromatography, the separation of 20(S)-, 20(R)-prosapogenin stereo-isomers of ginsenoside-$Rg_2$ and of ginsenoside-$Rg_3$ in ginseng saponins has been carried out with binary solvent system. The optimum conditions for the isomer separation are as following: Nova-$Pak^{(R)}C_{18}$ (Waters, $3.9{\times}150mm$) column, $CH_3CN/CH_3CN$ (100:8, v/v) binary solvent system and the flow rate was 1.7 mL/min. The stereoisomers were separated with change of the mixture ratio of the solvent system, the solvent elution by gradient program, and then detected at 203 nm of UV detector. The simultaneous separation of mixture that were the $Rg_2$, $Rg_3$ isomers was easily performed in nonpolar solvent for $Rg_2$, polar solvent for $Rg_3$ at the same optimum conditions.

  • PDF

Quantification of Karanjin Using High Performance Liquid Chromatography in Raw and Detoxified Karanj (Pongamia glabra vent) Seed Cake

  • Prabhu, T.M.;Devakumar, C.;Sastry, V.R.B.;Agrawa, D.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권3호
    • /
    • pp.416-420
    • /
    • 2002
  • Various products of karanj (Pongamia glabra) are utilized for industrial, health and animal agriculture applications in the Indian subcontinent. Despite a rich source of protein (CP, 28-34%), karanj cake was found to be slightly bitter in taste and toxic owing to the presence of flavonoid (Karanjin), restricting its safe inclusion in the livestock diets. Feeding trials with raw cake revealed its poor palatability and adverse performance among different categories of livestock including poultry. The present study was, therefore, aimed to detoxify karanj cake by various physico-chemical methods like solvent extraction, water washing, pressure cooking and alkali and acid treatments. The level of residual karanjin in raw and variously processed cake was quantified using high performance liquid chromatography (HPLC). The raw expeller karanj cake was found to contain about 0.19% of karanjin. Though a non-polar solvent, soxhlet extraction of expeller pressed cake with petroleum ether drastically reduced karanjin content (0.01%). Soaking of cake for 24 h in 1% NaOH (w/w) solution was found to reduce karanjin to a major extent with little further benefit by increasing alkali level. Milder alkalies like lime and fertilizer grade urea reduced the karanjin levels marginally. Similar was the case with mineral acids such as HCl and glacial acetic acid. It was, therefore, concluded that solvent extraction of karanj seeds would be the best method of detoxification as well as for more recovery of oil and karanjin.