• 제목/요약/키워드: HLL Riemann Solver

검색결과 10건 처리시간 0.024초

천수방정식에 대한 HLLL 근사 Riemann 해법의 적용 (An Application of the HLLL Approximate Riemann Solver to the Shallow Water Equations)

  • 황승용;이삼희
    • 대한토목학회논문집
    • /
    • 제32권1B호
    • /
    • pp.21-27
    • /
    • 2012
  • T. Linde가 제안한 HLLL 기법에서는 일반화된 엔트로피 함수의 도입으로 중앙파가 평가되므로 모든 파속이 초기 상태로부터 결정된다. HLLE 기법과 달리 Roe의 선형화 기법과 완전히 결별되고 HLLC 기법과 달리 정확해에 의존되지 않으므로 모태인 HLL 기법의 온전한 계승으로 볼 수 있다. 이 연구에서는 생성항이 없는 1차원 천수방정식에 농도와 관련된 보존변수를 추가한 지배방정식에 대해 총 에너지를 일반화된 엔트로피 함수로 두고 HLLL 기법을 적용하여 모형을 구성하였다. 정확해가 알려진 세 경우에 대해 모의한 결과, 1차 정확도 수치해의 한계에도 불구하고, 대체로 정확해와 잘 일치하였다. HLLL 기법은 그 외 HLL 형 기법에 비해 우수한 것으로 나타났다. 특히, 물이 빠져 바닥이 드러나는 경우에서 그 전선이 비교적 정확하게 포착되었다. 다만, 그 외 기법에 비해 계산 시간이 더 오래 걸리는 단점이 드러났다.

저감속 회수장비 시험조건에 따른 초음속 시험탄 감속특성에 대한 수치해석적 연구 (Numerical Studies on the Deceleration Characteristics of Supersonic Projectile According to the Test Condition Parameters in a Soft Recovery System)

  • 송민섭;김재훈
    • 한국군사과학기술학회지
    • /
    • 제23권5호
    • /
    • pp.485-493
    • /
    • 2020
  • Numerical analyses were performed using a one-dimensional Euler equation and Godunov Harten-Lax-Van Leer(HLL) Riemann solver in order to study the deceleration characteristics of a 155 mm projectile in a soft recovery system. The soft recovery system consisting of a series of pressure tubes is a system that decelerates the test projectile fired at supersonic speed using a high-pressure gas and filled water inside. Therefore, depending on the gas pressure and the amount of water filling, the deceleration and the exit velocity of the test projectile inside the pressure tube are determined. In this paper, the deceleration characteristics of the test projectile were analyzed according to the gas pressure and water mass filled.

HLLL 근사 Riemann 해법을 이용한 천수방정식의 수치해석 (A Numerical Analysis of the Shallow Water Equations Using the HLLL Approximate Riemann Solver)

  • 황승용;이삼희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.148-148
    • /
    • 2011
  • Riemann 문제는 천수방정식과 같은 쌍곡선형 방정식과 단일한 도약에 의해 불연속인 어떤 점의 좌 우에서 상수인 자료로 구성되는 초기치 문제로서 그 해법은 Godunov 방법과 같이 정확해에 의하면 정확 Riemann 해법, 근사 기법에 의하면 근사 Riemann 해법으로 불린다. 지금까지 이용되는 근사 Riemann 해법으로는 1981년에 P. L. Roe가 제안한 Roe의 선형화 기법과 1983년에 A. Harten, P. D. Lax, 그리고 B. van Leer가 제안한 HLL 기법의 수정 기법들이다. 최대 및 최소 파속만 고려하는 것으로 알려진 HLL 기법은 1988년에 B. Einfeldt의 제안에 의해 두 파속의 결정에서 Roe의 선형화 기법에 따른 고유치와 비교하는 것으로 수정되었다(HLLE 기법). 또한, 1994년에 E. F. Toro 등은 접촉파를 고려하기 위해 선형화된 지배방정식의 정확해로부터 중앙 파속을 고려하는 기법을 제안하였고, 이를 HLLC 기법으로 불렀다. 2002년에 T. Linde는 중앙 파속을 평가하기 위해 일반화된(수학적) 엔트로피 함수를 도입하였으며, van Leer는 이를 HLLL 기법으로 불렀다. 이 기법에서는 접촉파의 평가를 위해 보존변수에 대한 일반화된 엔트로피 함수로부터 중앙 파속이 유도되며, 이것과 특성 속도의 비교를 통해 최대 및 최소 파속이 결정된다. 따라서 이 기법에서는 모든 파속이 초기치로부터 결정되므로 HLLE 기법과 달리 Roe의 선형화 기법과 완전히 결별되고 HLLC 기법과 달리 정확해에 의존되지 않는 점에서 HLLL 기법은 모태인 HLL 기법의 온전한 계승으로 볼 수 있다. HLLL 기법은 여러 분야에 적용된 바 있으나, 수공학 분야에 적용된 사례는 알려진 바 없다. 이는 천수방정식에 대한 (물리적) 엔트로피 함수가 명확하지 않기 때문인 것으로 보인다. 이 연구에서는 보존변수로부터 정의되는 총 에너지를 일반화된 엔트로피 함수로 간주하여 모형을 구성하고, 정확해가 알려진 1차원 문제에 대해 적용성을 검토하였다. 정확해가 알려진 경우에 대해 모의한 결과, 1차 정도 수치해의 한계에도 불구하고, HLLL 기법의 결과는 대체로 정확해와 잘 일치하였으며 그 외의 HLL-형 기법의 그것에 비해 우수한 것으로 나타났다. 특히, 물이 빠져 바닥이 드러나는 상태에 대한 접촉 파속의 추정에서 Riemann 불변량을 이용하는 HLLC 기법에 비해 물이 빠지는 전선을 더 정확하게 포착하는 HLLL 기법의 결과는 매우 고무적이었다.

  • PDF

Riemann 근사해법을 이용한 수리해석모형의 비교 연구 (Comparative Study of Hydraulic Analysis Models Using Riemann Approximate Solver)

  • 김지성;한건연;안기홍
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1332-1336
    • /
    • 2007
  • 댐 제방 붕괴파는 갑작스러운 유량의 증가가 발생하여 불연속적인 흐름특성을 가지는 충격파(shock wave)가 전파되며, 갈수기 저수기에는 중소하천의 상류, 여울과 소에서의 흐름 또는 낙차공이나 보, 댐 여수로 등의 수공구조물에서 부분적인 사류 흐름이 발생된다. 이 때 흐름은 한계수위를 통과하게 되므로 기존 수치해법의 적용에 어려움이 존재한다. 본 연구에서는 실제하천에 적용될 수 있는 1차원 HLL, Roe Riemann 근사해법들을 간단히 소개하고, 시간공간적으로 2차의 고정확도 기법으로 확장하는 방법에 대하여 소개하였다. 각 기법을 정확해가 존재하는 댐붕괴 및 마른하도 전파의 경우에 적용하여 각 기법의 적용성 및 정확성을 비교하였다. 그리고 기존 Lax-Friedrichs 기법과 Lax-Wendroff 기법의 적용결과를 비교하였다. 적용결과 Lax-Friedrichs 기법을 제외한 모든 기법이 정확해와 잘 일치하였으며 특히 HLL 기법을 2차 정확도로 확장한 WAF 기법이 가장 높은 정확도로 계산되었다. 그러나 비선형 생성항이 존재하는 실제하천에 있어서 MUSCL 기법을 이용한 2차 정확도 기법이 합리적일 것으로 판단된다.

  • PDF

저감속 회수장비에서 초음속 시험탄 속도에 대한 이론적 및 실험적 비교 연구 (Analytical and Experimental Comparison of the Velocity of a Supersonic Projectile in the Soft Recovery System)

  • 송민섭;김재훈
    • 한국군사과학기술학회지
    • /
    • 제24권6호
    • /
    • pp.619-628
    • /
    • 2021
  • In order to compare numerical analyses made by Song and Kim needed for predicting gas and water filling with experimental results we conducted an experiment to recover a test projectile (43.7 kg with a 155 mm diameter) at a velocity of 775 m/s in a soft recovery system with a length of 179 m using pressurized gas and filled water. The soft recovery system consisting of a series of pressure tubes had a diaphragm, piston, and water plug for filling the pressurized gas and water. We installed a continuous wave Doppler radar system for velocity measurements of the test projectile travelling in the pressure tubes and pressure transducers for measuring the pressure in the soft recovery system. Continuous wave Doppler radar has the advantage of achieving real-time measurements of the velocity of a test projectile. The velocity-time curve of the test projectile, measured using the continuous wave Doppler radar, and the pressure profile were compared with the numerical analysis results. The experiment results show good agreement with the numerical analysis results based on the one-dimensional Euler equation with an HLL Riemann solver.

Quasi-steady Wave Propagation 알고리듬을 이용한 2차원 수치모형의 하상경사항 처리 (Treatment of the Bed Slope Source Term for 2-Dimensional Numerical Model Using Quasi-steady Wave Propagation Algorithm)

  • 김태형;한건연;김병현
    • 한국수자원학회논문집
    • /
    • 제44권2호
    • /
    • pp.145-156
    • /
    • 2011
  • 본 연구에서는 자연하천의 흐름에서 흔히 발생하는 천이류, 불연속류, 마른하도로의 파의 전파 등을 포함하는 복잡한 흐름을 해석하기 위한 고정확도 2차원 수치모형을 개발하였다. 하상경사항을 효율적으로 처리하기 위해 quasi-steady wave propagation 기법을 적용하여 해당 격자에 대한 생성항의 영향을 효율적으로 반영함으로써 쌍곡선형 적분 보존형의 2차원 천수방정식을 해석하였다. Fractional Step Method를 적용한 유한체적기법의 사용을 위해 HLL Riemann 해법을 이용하여 흐름률을 계산하였고, 시간 및 공간에 대한 2차 정확도를 만족하기 위해 MUSCL 기법을 적용하였다. 2차 정확도의 사용으로 불연속지점에서 발생하는 수치진동은 TVD 기법 적용을통해 제어하였다. 개발된모형은 2차원 제방 붕괴 및 댐하류부에 구조물이 존재하는 경우의댐 붕괴 모의를 통해실측치와의 검증을 실시하였다. 또한 하류부에 역경사가 존재하는 경우의 댐 붕괴 모의를 통해 실측치와 비교함으로써 생성항의 영향에 대한 모형의 적용성을 검증하였다.

Riemann 해법을 이용한 1차원 개수로 수리해석Ⅰ: 모형 개발 (One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver I : Model Development)

  • 김지성;한건연
    • 한국수자원학회논문집
    • /
    • 제41권8호
    • /
    • pp.761-772
    • /
    • 2008
  • 본 연구의 목적은 수공학 분야에서 수치해석이 난해한 문제를 해결하기 위한 모형을 개발하고, 해석해가 존재하는 다양한 수치실험, 즉 하상과 하폭이 함께 변하는 점변부정류 조건에서의 검증, 하상경사가 변화하는 세가지 정상상태 조건의 문제, 그리고 해석해가 있는 마찰하상에 적용함으로써 개발된 모형의 적용성을 검증하기 위한 것이다. 모형의 지배방정식은 보존 법칙을 만족하는 Saint-Venant 적분형 방정식이며, Riemann 해법에 의한 유한체적법이 사용되었다. 질량 및 운동량의 흐름율 계산에 HLL Riemann 근사해법이 사용되었고, 시간-공간에서 2차정확도를 위하여 MUSCL-Hancock 기법이 사용되었다. 본 연구에서는 비선형의 흐름율과 생성항과의 균형을 위하여, 중력과 흐름방향 하폭의 변화로 인한 정수압력에 의한 생성항을 차분하는 새롭고 간편한 기법을 소개하였다. 수치실험 모의결과는 개발된 모형이 생성항을 포함한 다양한 흐름조건에서 정확하고, 견고하며, 매우 안정적임을 보여주고, 또한 수공학 분야에서 일차원 적용에 적합한 모형임을 보여준다.

Riemann 해법을 이용한 1차원 유한체적모형 개발 (Development of One Dimensional Finite Volume Model Using Riemann Approximate Solver)

  • 김지성;한건연;안기홍
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.428-432
    • /
    • 2007
  • 댐 제방 등의 붕괴로 인하여 발생하는 급격한 유량의 변화와 흐름영역의 변화로 인한 천이류 및 도수의 발생, 불규칙한 하천단면에서 갈수기 저수기의 흐름해석은 기존의 수치해법의 한계로 인하여 수리모형실험 및 경험식 또는 단면의 단순화 등에 의존하고 있는 실정이다. 본 연구에서는 자연하천에서 비선형 흐름율 계산에 불연속초기조건의 해석해인 Riemann 근사해법을 사용하여 수치적으로 안정되고 정확한 1차원 모형을 개발하고자 한다. 이를 위하여 유한체적법을 사용하였고, 수위와 유량의 계산을 위하여 요구되는 유한체적을 유출입하는 흐름율의 계산에 HLL Riemann 해법을 사용하였으며, MUSCL 기법으로 2차 정확도기법으로 확장하였다. Riemann 해법을 통하여 계산된 비선형의 흐름율과 보존 특성을 만족시켜줄 수 있는 하상 및 하폭변화로 인한 생성항을 처리하는 기법을 제안함으로서 새로운 1차원 수치해석모형을 개발하였다. 개발된 모형의 실제하천의 적용성을 확인하기 위하여 하상과 하폭이 변화하는 부정류 흐름에 적용하여 모형의 적용성 및 정확성을 검증하였다.

  • PDF

불연속 갤러킨 유한요소법을 이용한 1차원 천수방정식의 댐 붕괴류 및 천이류 해석 (Dam-Break and Transcritical Flow Simulation of 1D Shallow Water Equations with Discontinuous Galerkin Finite Element Method)

  • 윤광희;이해균;이남주
    • 대한토목학회논문집
    • /
    • 제34권5호
    • /
    • pp.1383-1393
    • /
    • 2014
  • 최근, 급속한 컴퓨터 하드웨어의 성능 향상과 전산유체역학 분야의 이론적 발전으로, 고차 정확도의 수치기법들이 계산수리학 분야에 적용되어 왔다. 본 연구에서는 1차원 천수방정식에 대한 수치 해법으로 TVD Runge-Kutta 불연속 갤러킨(RKDG) 유한요소법을 적용하였다. 대표적인 천이류(transcritical flow)의 예로 순간적인 댐 붕괴에 의한 댐 붕괴류(dam-break flow) 흐름과 지형변화에 의한 천이류를 모의하였다. 리만(Riemann) 근사해법으로 로컬 Lax-Friedrichs (LLF), Roe, HLL 흐름률(flux) 기법을 사용하였고, 불필요한 진동을 제거하기 위하여, 기울기 제한자로서 MUSCL 제한자를 사용하였다. 개발된 모델은 1차원 댐 붕괴류와 천이류에 적용하였다. 수치해석 결과는 해석해, 수리실험 결과와 비교하였다.

(b, s) 좌표로 표현된 천수방정식에 유한체적법을 사용하여 해상 및 해저 산사태 수치모의 (Numerical Simulation of Subaerial and Submarine Landslides Using the Finite Volume Method in the Shallow Water Equations with (b, s) Coordinate)

  • 팜반코이;이창훈;부반니
    • 한국해안·해양공학회논문집
    • /
    • 제31권4호
    • /
    • pp.229-239
    • /
    • 2019
  • 산사태의 시간에 따른 전파를 모의하기 위해서 천수방정식을 사용하여 산사태 수치모형을 개발하였다. 하천 및 해양에서의 산사태에 모두 해석이 가능하도록 (b, s) 좌표로 표현된 천수방정식을 개발하였다. 산사태에서 발생하는 수치적인 불연속성을 극복하기 위해서 HLL approximate Riemann solver와 total variation diminishing (TVD) limiter를 사용한 유한체적법을 사용하였다. 댐파괴 흐름와 토석류의 각 경우에 수치해석을 수행한 결과를 해석해와 실험자료와 비교를 하였다. 그 결과 서로 유사함을 확인되었다. 본 모형을 사용하여 해상 산사태와 해저 산사태를 성공적으로 모의하였다. 해저 산사태에 비해 해상 산사태의 전파속도가 더 빠르고, 바닥경사가 급할수록 또는 거칠기가 작을수록 산사태 전파속도가 더 빨라짐을 확인하였다.