Browse > Article
http://dx.doi.org/10.9765/KSCOE.2019.31.4.229

Numerical Simulation of Subaerial and Submarine Landslides Using the Finite Volume Method in the Shallow Water Equations with (b, s) Coordinate  

Pham, Van Khoi (Department of Civil & Environmental Engineering, Sejong University and Faculty of Civil Engineering, Vietnam Maritime University)
Lee, Changhoon (Department of Civil & Environmental Engineering, Sejong University)
Vu, Van Nghi (Faculty of Transportation Engineering, HoChiMinh City University of Transport)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.31, no.4, 2019 , pp. 229-239 More about this Journal
Abstract
A model of landslides is developed using the shallow water equations to simulate time-dependent performance of landslides. The shallow water equations are derived using the (b, s) coordinate system which can be applied in both river and ocean. The finite volume scheme employing the HLL approximate Riemann solver and the total variation diminishing (TVD) limiter is applied to deal with the numerical discontinuities occurring in landslides. For dam-break water flow and debris flow, numerical results are compared with analytical solutions and experimental data and good agreements are observed. The developed landslide model is successfully applied to predict subaerial and submarine landslides. It is found that the subaerial landslide propagates faster than the submarine landslide and the speed of propagation becomes faster with steeper bottom slope and less bottom roughness.
Keywords
subaerial landslide; submarine landslide; debris flow; shallow water equations; (b, s) coordinate; numerical analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 McDougall, S., Boultbee, N., Hungr, O., Stead, D. and Schwab, J.W. (2006). The Zymoetz River landslide, British Columbia, Canada: description and dynamic analysis of a rock slide-debris flow. Landslides, 3, 195-204. https://doi.org/10.1007/s10346-006-0042-3.   DOI
2 Mikos, M., Fazarinc, R., Majes, B., Rajar, R., Zagar, D., Krzyk, M., Hojnik, T. and Cetina, M. (2006). Numerical simulation of debris flows triggered from the Strug rock fall source area, W Slovenia. Natural Hazards and Earth System Science, 6, 261-270. https://doi.org/10.5194/nhess-6-261-2006.   DOI
3 Naef, D., Rickenmann, D., Rutschmann, P. and McArdell, B.W. (2006). Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Natural Hazards and Earth System Science, 6, 155-165. https://doi.org/10.5194/nhess-6-155-2006.   DOI
4 Paik, J. (2015). A high resolution finite volume model for 1D debris flow. Journal of Hydro-environment Research, 9, 145-155. https://doi.org/10.1016/j.jher.2014.03.001.   DOI
5 Rzadkiewicz, S.A., Mariotti, C. and Heinrich, P. (1997). Numerical Simulation of Submarine Landslides and Their Hydraulic Effects. Journal of Waterway, Port, Coastal, and Ocean Engineering, 123, 149-157. https://doi.org/10.1061/(ASCE)0733-950X(1997)123:4(149).   DOI
6 Sassa, K., Dang, K., Yanagisawa, H. and He, B. (2016). A new landslide-induced tsunami simulation model and its application to the 1792 Unzen-Mayuyama landslide-and-tsunami disaster. Landslides, 13, 1405-1419. https://doi.org/10.1007/s10346-016-0691-9.   DOI
7 Stansby, P.K., Chegini, A. and Barnes, T.C.D. (1998). The initial stages of dam-break flow 18.
8 Tappin, D.R., Grilli, S.T., Harris, J.C., Geller, R.J., Masterlark, T., Kirby, J.T., Shi, F., Ma, G., Thingbaijam, K.K.S. and Mai, P.M. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344-361. https://doi.org/10.1016/j.margeo.2014.09.043.   DOI
9 Toro, E.F. (2001). Shock-capturing methods for free-surface shallow flows. John Wiley & Sons, LTD.
10 Van Tien, P., Sassa, K., Takara, K., Fukuoka, H., Dang, K., Shibasaki, T., Ha, N.D., Setiawan, H. and Loi, D.H. (2018). Formation process of two massive dams following rainfall-induced deep-seated rapid landslide failures in the Kii Peninsula of Japan. Landslides, 15, 1761-1778. https://doi.org/10.1007/s10346-018-0988-y.   DOI
11 Voellmy, A. (1955). Uber die Zertorungskraft von Lawinen. Schweizerische Bauzeitung. Schweizerische Bauzeitung, 73, 212-285.
12 Yavari-Ramshe, S., Ataie-Ashtiani, B. and Sanders, B.F. (2015). A robust finite volume model to simulate granular flows. Computers and Geotechnics, 66, 96-112. https://doi.org/10.1016/j.compgeo.2015.01.015.   DOI
13 Iverson, R.M. (2015). Scaling and design of landslide and debrisflow experiments. Geomorphology, 244, 9-20. https://doi.org/10.1016/j.geomorph.2015.02.033.   DOI
14 Denlinger, R.P. and Iverson, R.M. (2001). Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. Journal of Geophysical Research: Solid Earth, 106, 553-566. https://doi.org/10.1029/2000JB900330.   DOI
15 Erduran, K.S., Kutija, V. and Hewett, C.J.M. (2002). Performance of finite volume solutions to the shallow water equations with shock-capturing schemes. International Journal for Numerical Methods in Fluids, 40, 1237-1273. https://doi.org/10.1002/fld.402.   DOI
16 Horrillo, J., Wood, A., Kim, G.-B. and Parambath, A. (2013). A simplified 3-D Navier-Stokes numerical model for landslidetsunami: Application to the Gulf of Mexico: A Simplified 3-D Tsunami Numerical Model. Journal of Geophysical Research: Oceans, 118, 6934-6950. https://doi.org/10.1002/2012JC008689.   DOI
17 Imran, J., Parker, G., Locat, J. and Lee, H. (2001). 1D Numerical Model of Muddy Subaqueous and Subaerial Debris Flows. Journal of Hydraulic Engineering, 127, 959-968. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(959).   DOI
18 Iverson, R.M. (2003). The debris-flow rheology myth. Debris Flow Mechanics and Mitigation Conference. Mill Press, Davos, 303-314.
19 Iverson, R.M., Logan, M., LaHusen, R.G. and Berti, M. (2010). The perfect debris flow? Aggregated results from 28 large-scale experiments. Journal of Geophysical Research, 115, F03005. https://doi.org/10.1029/2009JF001514.   DOI
20 Jakob, M., Anderson, D., Fuller, T., Hungr, O. and Ayotte, D. (2000). An unusually large debris flow at Hummingbird Creek, Mara Lake, British Columbia. Canadian Geotechnical Journal, 37, 1109-1125.   DOI
21 Liang, Q. and Marche, F. (2009). Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources, 32, 873-884. https://doi.org/10.1016/j.advwatres.2009.02.010.   DOI
22 Major, J.J. (1997). Depositional Processes in Large-Scale Debris-Flow Experiments. The Journal of Geology, 105, 345-366. https://doi.org/10.1086/515930.   DOI
23 Mangeney, A., Heinrich, P. and Roche, R. (2000). Analytical Solution for Testing Debris Avalanche Numerical Models. Pure and Applied Geophysics, 157, 1081-1096. https://doi.org/10.1007/s000240050018.   DOI