• Title/Summary/Keyword: HLL Riemann Solver

Search Result 10, Processing Time 0.214 seconds

An Application of the HLLL Approximate Riemann Solver to the Shallow Water Equations (천수방정식에 대한 HLLL 근사 Riemann 해법의 적용)

  • Hwang, Seung-Yong;Lee, Sam Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.21-27
    • /
    • 2012
  • The HLLL scheme, proposed by T. Linde, determines all the wave speeds from the initial states because the middle wave is evaluated by the introduction of a generalized entropy function. The scheme is considered a genuine successor to the original HLL scheme because it is completely separated form the Roe's linearization scheme unlike the HLLE scheme and does not rely on the exact solution unlike the HLLC scheme. In this study, a numerical model was configured by the HLLL scheme with the total energy as a generalized entropy function to solve governing equations, which are the one-dimensional shallow water equations without source terms and with an additional conserved variable relating a concentration. Despite the limitations of the first order solutions, results to three cases with the exact solutions were generally accurate. The HLLL scheme appeared to be superior in comparison with the other HLL-type schemes. In particular, the scheme gave fairly accurate results in capturing the front of wetting and drying. However, it revealed shortcomings of more time-consuming calculations compared to the other schemes.

Numerical Studies on the Deceleration Characteristics of Supersonic Projectile According to the Test Condition Parameters in a Soft Recovery System (저감속 회수장비 시험조건에 따른 초음속 시험탄 감속특성에 대한 수치해석적 연구)

  • Song, Minsup;Kim, Jaehoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.485-493
    • /
    • 2020
  • Numerical analyses were performed using a one-dimensional Euler equation and Godunov Harten-Lax-Van Leer(HLL) Riemann solver in order to study the deceleration characteristics of a 155 mm projectile in a soft recovery system. The soft recovery system consisting of a series of pressure tubes is a system that decelerates the test projectile fired at supersonic speed using a high-pressure gas and filled water inside. Therefore, depending on the gas pressure and the amount of water filling, the deceleration and the exit velocity of the test projectile inside the pressure tube are determined. In this paper, the deceleration characteristics of the test projectile were analyzed according to the gas pressure and water mass filled.

A Numerical Analysis of the Shallow Water Equations Using the HLLL Approximate Riemann Solver (HLLL 근사 Riemann 해법을 이용한 천수방정식의 수치해석)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.148-148
    • /
    • 2011
  • Riemann 문제는 천수방정식과 같은 쌍곡선형 방정식과 단일한 도약에 의해 불연속인 어떤 점의 좌 우에서 상수인 자료로 구성되는 초기치 문제로서 그 해법은 Godunov 방법과 같이 정확해에 의하면 정확 Riemann 해법, 근사 기법에 의하면 근사 Riemann 해법으로 불린다. 지금까지 이용되는 근사 Riemann 해법으로는 1981년에 P. L. Roe가 제안한 Roe의 선형화 기법과 1983년에 A. Harten, P. D. Lax, 그리고 B. van Leer가 제안한 HLL 기법의 수정 기법들이다. 최대 및 최소 파속만 고려하는 것으로 알려진 HLL 기법은 1988년에 B. Einfeldt의 제안에 의해 두 파속의 결정에서 Roe의 선형화 기법에 따른 고유치와 비교하는 것으로 수정되었다(HLLE 기법). 또한, 1994년에 E. F. Toro 등은 접촉파를 고려하기 위해 선형화된 지배방정식의 정확해로부터 중앙 파속을 고려하는 기법을 제안하였고, 이를 HLLC 기법으로 불렀다. 2002년에 T. Linde는 중앙 파속을 평가하기 위해 일반화된(수학적) 엔트로피 함수를 도입하였으며, van Leer는 이를 HLLL 기법으로 불렀다. 이 기법에서는 접촉파의 평가를 위해 보존변수에 대한 일반화된 엔트로피 함수로부터 중앙 파속이 유도되며, 이것과 특성 속도의 비교를 통해 최대 및 최소 파속이 결정된다. 따라서 이 기법에서는 모든 파속이 초기치로부터 결정되므로 HLLE 기법과 달리 Roe의 선형화 기법과 완전히 결별되고 HLLC 기법과 달리 정확해에 의존되지 않는 점에서 HLLL 기법은 모태인 HLL 기법의 온전한 계승으로 볼 수 있다. HLLL 기법은 여러 분야에 적용된 바 있으나, 수공학 분야에 적용된 사례는 알려진 바 없다. 이는 천수방정식에 대한 (물리적) 엔트로피 함수가 명확하지 않기 때문인 것으로 보인다. 이 연구에서는 보존변수로부터 정의되는 총 에너지를 일반화된 엔트로피 함수로 간주하여 모형을 구성하고, 정확해가 알려진 1차원 문제에 대해 적용성을 검토하였다. 정확해가 알려진 경우에 대해 모의한 결과, 1차 정도 수치해의 한계에도 불구하고, HLLL 기법의 결과는 대체로 정확해와 잘 일치하였으며 그 외의 HLL-형 기법의 그것에 비해 우수한 것으로 나타났다. 특히, 물이 빠져 바닥이 드러나는 상태에 대한 접촉 파속의 추정에서 Riemann 불변량을 이용하는 HLLC 기법에 비해 물이 빠지는 전선을 더 정확하게 포착하는 HLLL 기법의 결과는 매우 고무적이었다.

  • PDF

Comparative Study of Hydraulic Analysis Models Using Riemann Approximate Solver (Riemann 근사해법을 이용한 수리해석모형의 비교 연구)

  • Kim, Ji-Sung;Han, Kun-Yeun;Ahn, Ki-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1332-1336
    • /
    • 2007
  • 댐 제방 붕괴파는 갑작스러운 유량의 증가가 발생하여 불연속적인 흐름특성을 가지는 충격파(shock wave)가 전파되며, 갈수기 저수기에는 중소하천의 상류, 여울과 소에서의 흐름 또는 낙차공이나 보, 댐 여수로 등의 수공구조물에서 부분적인 사류 흐름이 발생된다. 이 때 흐름은 한계수위를 통과하게 되므로 기존 수치해법의 적용에 어려움이 존재한다. 본 연구에서는 실제하천에 적용될 수 있는 1차원 HLL, Roe Riemann 근사해법들을 간단히 소개하고, 시간공간적으로 2차의 고정확도 기법으로 확장하는 방법에 대하여 소개하였다. 각 기법을 정확해가 존재하는 댐붕괴 및 마른하도 전파의 경우에 적용하여 각 기법의 적용성 및 정확성을 비교하였다. 그리고 기존 Lax-Friedrichs 기법과 Lax-Wendroff 기법의 적용결과를 비교하였다. 적용결과 Lax-Friedrichs 기법을 제외한 모든 기법이 정확해와 잘 일치하였으며 특히 HLL 기법을 2차 정확도로 확장한 WAF 기법이 가장 높은 정확도로 계산되었다. 그러나 비선형 생성항이 존재하는 실제하천에 있어서 MUSCL 기법을 이용한 2차 정확도 기법이 합리적일 것으로 판단된다.

  • PDF

Analytical and Experimental Comparison of the Velocity of a Supersonic Projectile in the Soft Recovery System (저감속 회수장비에서 초음속 시험탄 속도에 대한 이론적 및 실험적 비교 연구)

  • Song, Minsup;Kim, Jaehoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.619-628
    • /
    • 2021
  • In order to compare numerical analyses made by Song and Kim needed for predicting gas and water filling with experimental results we conducted an experiment to recover a test projectile (43.7 kg with a 155 mm diameter) at a velocity of 775 m/s in a soft recovery system with a length of 179 m using pressurized gas and filled water. The soft recovery system consisting of a series of pressure tubes had a diaphragm, piston, and water plug for filling the pressurized gas and water. We installed a continuous wave Doppler radar system for velocity measurements of the test projectile travelling in the pressure tubes and pressure transducers for measuring the pressure in the soft recovery system. Continuous wave Doppler radar has the advantage of achieving real-time measurements of the velocity of a test projectile. The velocity-time curve of the test projectile, measured using the continuous wave Doppler radar, and the pressure profile were compared with the numerical analysis results. The experiment results show good agreement with the numerical analysis results based on the one-dimensional Euler equation with an HLL Riemann solver.

Treatment of the Bed Slope Source Term for 2-Dimensional Numerical Model Using Quasi-steady Wave Propagation Algorithm (Quasi-steady Wave Propagation 알고리듬을 이용한 2차원 수치모형의 하상경사항 처리)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.145-156
    • /
    • 2011
  • Two dimensional numerical model of high-order accuracy is developed to analyze complex flow including transition flow, discontinuous flow, and wave propagation to dry bed emerging at natural river flow. The bed slope term of two dimensional shallow water equation consisting of integral conservation law is treated efficiently by applying quasi-steady wave propagation scheme. In order to apply Finite Volume Method using Fractional Step Method, MUSCL scheme is applied based on HLL Riemann solver, which is second-order accurate in time and space. The TVD method is applied to prevent numerical oscillations in the second-order accurate scheme. The developed model is verified by comparing observed data of two dimenstional levee breach experiment and dam breach experiment containing structure at lower section of channel. Also effect of the source term is verified by applying to dam breach experiment considering the adverse slope channel.

One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver I : Model Development (Riemann 해법을 이용한 1차원 개수로 수리해석Ⅰ: 모형 개발)

  • Kim, Ji-Sung;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.761-772
    • /
    • 2008
  • The object of this study is to develop the model that solves the numerically difficult problems in hydraulic engineering and to demonstrate the applicability of this model by means of various test examples, such as, verification in the gradually varied unsteady condition, three steady flow problems with the change of bottom slope with exact solution, and frictional bed with analytical solution. The governing equation of this model is the integral form of the Saint-Venant equation satisfying the conservation laws, and finite volume method with the Riemann solver is used. The evaluation of the mass and momentum flux with the HLL Riemann approximate solver is executed. MUSCL-Hancock scheme is used to achieve the second order accuracy in space and time. This study introduce the new and simple technique to discretize the source terms of gravity and hydrostatic pressure force due to longitudinal width variation for the balance of quantity between nonlinear flux and source terms. The results show that the developed model's implementation is accurate, robust and highly stable in various flow conditions with source terms, and this model is reliable for one-dimensional applications in hydraulic engineering.

Development of One Dimensional Finite Volume Model Using Riemann Approximate Solver (Riemann 해법을 이용한 1차원 유한체적모형 개발)

  • Kim, Ji-Sung;Han, Kun-Yeun;Ahn, Ki-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.428-432
    • /
    • 2007
  • 댐 제방 등의 붕괴로 인하여 발생하는 급격한 유량의 변화와 흐름영역의 변화로 인한 천이류 및 도수의 발생, 불규칙한 하천단면에서 갈수기 저수기의 흐름해석은 기존의 수치해법의 한계로 인하여 수리모형실험 및 경험식 또는 단면의 단순화 등에 의존하고 있는 실정이다. 본 연구에서는 자연하천에서 비선형 흐름율 계산에 불연속초기조건의 해석해인 Riemann 근사해법을 사용하여 수치적으로 안정되고 정확한 1차원 모형을 개발하고자 한다. 이를 위하여 유한체적법을 사용하였고, 수위와 유량의 계산을 위하여 요구되는 유한체적을 유출입하는 흐름율의 계산에 HLL Riemann 해법을 사용하였으며, MUSCL 기법으로 2차 정확도기법으로 확장하였다. Riemann 해법을 통하여 계산된 비선형의 흐름율과 보존 특성을 만족시켜줄 수 있는 하상 및 하폭변화로 인한 생성항을 처리하는 기법을 제안함으로서 새로운 1차원 수치해석모형을 개발하였다. 개발된 모형의 실제하천의 적용성을 확인하기 위하여 하상과 하폭이 변화하는 부정류 흐름에 적용하여 모형의 적용성 및 정확성을 검증하였다.

  • PDF

Dam-Break and Transcritical Flow Simulation of 1D Shallow Water Equations with Discontinuous Galerkin Finite Element Method (불연속 갤러킨 유한요소법을 이용한 1차원 천수방정식의 댐 붕괴류 및 천이류 해석)

  • Yun, Kwang Hee;Lee, Haegyun;Lee, Namjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1383-1393
    • /
    • 2014
  • Recently, with rapid improvement in computer hardware and theoretical development in the field of computational fluid dynamics, high-order accurate schemes also have been applied in the realm of computational hydraulics. In this study, numerical solutions of 1D shallow water equations are presented with TVD Runge-Kutta discontinuous Galerkin (RKDG) finite element method. The transcritical flows such as dam-break flows due to instant dam failure and transcritical flow with bottom elevation change were studied. As a formulation of approximate Riemann solver, the local Lax-Friedrichs (LLF), Roe, HLL flux schemes were employed and MUSCL slope limiter was used to eliminate unnecessary numerical oscillations. The developed model was applied to 1D dam break and transcritical flow. The results were compared to the exact solutions and experimental data.

Numerical Simulation of Subaerial and Submarine Landslides Using the Finite Volume Method in the Shallow Water Equations with (b, s) Coordinate ((b, s) 좌표로 표현된 천수방정식에 유한체적법을 사용하여 해상 및 해저 산사태 수치모의)

  • Pham, Van Khoi;Lee, Changhoon;Vu, Van Nghi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.229-239
    • /
    • 2019
  • A model of landslides is developed using the shallow water equations to simulate time-dependent performance of landslides. The shallow water equations are derived using the (b, s) coordinate system which can be applied in both river and ocean. The finite volume scheme employing the HLL approximate Riemann solver and the total variation diminishing (TVD) limiter is applied to deal with the numerical discontinuities occurring in landslides. For dam-break water flow and debris flow, numerical results are compared with analytical solutions and experimental data and good agreements are observed. The developed landslide model is successfully applied to predict subaerial and submarine landslides. It is found that the subaerial landslide propagates faster than the submarine landslide and the speed of propagation becomes faster with steeper bottom slope and less bottom roughness.