• Title/Summary/Keyword: H-subspace

Search Result 84, Processing Time 0.018 seconds

REMARK ON GENERALIZED k-QUASIHYPONORMAL OPERATORS

  • Ko, Eun-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.701-707
    • /
    • 1998
  • An operator $T{\in} {{\mathcal L}(H)}$ is generalized k-quasihyponormal if there exist a constant M>0 such that $T^{\ast k}[M^2(T-z)^{\ast}(T-z)-(T-z)(T-z)^{\ast}]T^k{\geq}0$ for some integer $k{\geq}0$ and all $Z{\in} {\mathbf C}$. In this paper, we show that it T is a generalized k-quasihyponormal operator with the property $0{\not\in}{\sigma}(T)$, then T is subscalar of order 2. As a corollary, we get that such a T has a nontrivial invariant subspace if its spectrum has interior in C.

  • PDF

QUASI-INNER FUNCTIONS OF A GENERALIZED BEURLING'S THEOREM

  • Kim, Yun-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1229-1236
    • /
    • 2009
  • We introduce two kinds of quasi-inner functions. Since every rationally invariant subspace for a shift operator S$_K$ on a vector-valued Hardy space H$^2$(${\Omega}$, K) is generated by a quasi-inner function, we also provide relationships of quasi-inner functions by comparing rationally invariant subspaces generated by them. Furthermore, we discuss fundamental properties of quasi-inner functions and quasi-inner divisors.

INTERPOLATION FOR HILBERT-SCHMIDT OPERATOR AND APPLICATION TO OPERATOR CORONA THEOREM

  • Kang, Joo-Ho;Ha, Dae-Yeon;Baik, Hyoung-Gu
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.341-347
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i = Y_i$, for i = 1,2…, n. In this paper, we investigate Hilbert-Schmidt interpolation problems in tridiagonal algebra by connecting the classical corona theorem.

UNITARY INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONGWAN
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.649-654
    • /
    • 2005
  • Given operators X and Y acting on a separable complex Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let $Alg{\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$ and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists a unitary operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded sequence {${\alpha}_n$} in ${\mathbb{C}}$ such that ${\mid}{\alpha}_j{\mid}=1$ and $y_{ij}={\alpha}_jx_{ij}$ for $j{\in}{\mathbb{N}}$.

  • PDF

SELF-ADJOINT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • Kang, Joo Ho;Lee, SangKi
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.29-32
    • /
    • 2014
  • Given operators X and Y acting on a separable Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate self-adjoint interpolation problems for operators in a tridiagonal algebra : Let $\mathcal{L}$ be a subspace lattice acting on a separable complex Hilbert space $\mathcal{H}$ and let X = ($x_{ij}$) and Y = ($y_{ij}$) be operators acting on $\mathcal{H}$. Then the following are equivalent: (1) There exists a self-adjoint operator A = ($a_{ij}$) in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded real sequence {${\alpha}_n$} such that $y_{ij}={\alpha}_ix_{ij}$ for $i,j{\in}\mathbb{N}$.

EXISTENCE OF WEAK NON-NEGATIVE SOLUTIONS FOR A CLASS OF NONUNIFORMLY BOUNDARY VALUE PROBLEM

  • Hang, Trinh Thi Minh;Toan, Hoang Quoc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.737-748
    • /
    • 2012
  • The goal of this paper is to study the existence of non-trivial non-negative weak solution for the nonlinear elliptic equation: $$-div(h(x){\nabla}u)=f(x,u)\;in\;{\Omega}$$ with Dirichlet boundary condition in a bounded domain ${\Omega}{\subset}\mathbb{R}^N$, $N{\geq}3$, where $h(x){\in}L^1_{loc}({\Omega})$, $f(x,s)$ has asymptotically linear behavior. The solutions will be obtained in a subspace of the space $H^1_0({\Omega})$ and the proofs rely essentially on a variation of the mountain pass theorem in [12].

COMPACT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.447-452
    • /
    • 2005
  • Given operators X and Y on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. Let L be a subspace lattice acting on a separable complex Hilbert space H and Alg L be a tridiagonal algebra. Let X = $(x_{ij})\;and\;Y\;=\;(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a compact operator A = $(x_{ij})$ in AlgL such that AX = Y. (2) There is a sequence {$\alpha_n$} in $\mathbb{C}$ such that {$\alpha_n$} converges to zero and $$y_1\;_j=\alpha_1x_1\;_j+\alpha_2x_2\;_j\;y_{2k}\;_j=\alpha_{4k-1}x_{2k\;j}\;y_{2k+1\;j}=\alpha_{4k}x_{2k\;j}+\alpha_{4k+1}x_{2k+1\;j}+\alpha_{4k+2}x_{2k+2\;j\;for\;all\;k\;\epsilon\;\mathbb{N}$$.

UNITARY INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Jo, Young-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.3
    • /
    • pp.487-493
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for the n-operators satisfies the equation AX$\_$i/ : Y$\_$i/, for i = 1, 2 …, n. In this article, we obtained the following : Let X = (x$\_$ij/) and Y = (y$\_$ij/) be operators acting on H such that $\varkappa$$\_$ i$\sigma$ (i)/ 0 for all i. Then the following statements are equivalent. (1) There exists a unitary operator A in Alg(equation omitted) such that AX = Y and every E in (equation omitted) reduces A. (2) sup{(equation omitted)}<$\infty$ and (equation omitted) = 1 for all i = 1, 2, ….

NUMERICAL COUPLING OF TWO SCALAR CONSERVATION LAWS BY A RKDG METHOD

  • OKHOVATI, NASRIN;IZADI, MOHAMMAD
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.211-236
    • /
    • 2019
  • This paper is devoted to the study and investigation of the Runge-Kutta discontinuous Galerkin method for a system of differential equations consisting of two hyperbolic conservation laws. The numerical coupling flux which is used at a given interface (x = 0) is the upwind flux. Moreover, in the linear case, we derive optimal convergence rates in the $L_2$-norm, showing an error estimate of order ${\mathcal{O}}(h^{k+1})$ in domains where the exact solution is smooth; here h is the mesh width and k is the degree of the (orthogonal Legendre) polynomial functions spanning the finite element subspace. The underlying temporal discretization scheme in time is the third-order total variation diminishing Runge-Kutta scheme. We justify the advantages of the Runge-Kutta discontinuous Galerkin method in a series of numerical examples.

PROJECTIONS OF ALGEBRAIC VARIETIES WITH ALMOST LINEAR PRESENTATION II

  • Ahn, Jeaman
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.181-188
    • /
    • 2021
  • Let X be a nondegenerate reduced closed subscheme in ℙn. Assume that πq : X → Y = πq(X) ⊂ ℙn-1 is a generic projection from the center q ∈ Sec(X) \ X where Sec(X) = ℙn. Let Z be the singular locus of the projection πq(X) ⊂ ℙn-1. Suppose that IX has the almost minimal presentation, which is of the form R(-3)β2,1 ⊕ R(-4) → R(-2)β1,1 → IX → 0. In this paper, we prove the followings: (a) Z is either a linear space or a quadric hypersurface in a linear subspace; (b) $H^1({\mathcal{I}_X(k)})=H^1({\mathcal{I}_Y(k)})$ for all k ∈ ℤ; (c) reg(Y) ≤ max{reg(X), 4}; (d) Y is cut out by at most quartic hypersurfaces.