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EXISTENCE OF WEAK NON-NEGATIVE SOLUTIONS
FOR A CLASS OF NONUNIFORMLY
BOUNDARY VALUE PROBLEM

TRINH THI MINH HANG AND HOANG Quoc TOAN

ABSTRACT. The goal of this paper is to study the existence of non-trivial
non-negative weak solution for the nonlinear elliptic equation:
—div(h(z)Vu) = f(z,u) in Q

with Dirichlet boundary condition in a bounded domain Q C RN, N > 3,
where h(z) € L} (Q), f(x,s) has asymptotically linear behavior. The

loc
solutions will be obtained in a subspace of the space H& (©2) and the

proofs rely essentially on a variation of the mountain pass theorem in
[12].

1. Introduction

Let Q be a bounded domain in RY, N > 3 with smooth boundary 0.
We study the existence of non-trivial weak solution of the following Dirichlet
problem

—div(h(z)Vu) = f(z,u) inQ

(L) u(z) =0 on 012,

where h(z) € Li, (), h(z) > 1 a.e. x €.

loc
Due to the presence of h(x) € L}, .(£2), the problem now may be non-uniform
in sense that the functional associated to the problem may be infinity for some
w in H}(2). In what follow, we deduce the problem (1.1) to a uniform one
by using an appropriate weighted Sobolev space. Then applying a variation
of the mountain pass theorem in [12], we prove that the problem (1.1) admits
a non-trivial non-negative weak solution in a subspace of the H}(Q). Let us

introduce some hypotheses:
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F1) f:Q xR — R is a Caratheodory function satisfying
f(z,s) =0 for all s <0, a.e. €.
F2) There exists a constant C' > 0 such that |@| < C ae x € Q,
Vs € (0,400) and f is “asymptotically linear” in the sense that there
exists 8 € C(Q) such that (z) = lim_, o0 L2 uniformly a.e. x € Q.

S

Firstly, we introduce some following remark:

Remark 1.1. There is a rich literature dealing with asymptotically linear prob-
lem and existence results on bounded domain or unbounded domain in the
case that h(x) = 1 which have been obtained via variational methods (see
[1, 4, 18, 19, 20] and the reference therein). However, to the best of our knowl-
edge, there has never been any study on the existence results of asymptotically
linear of the problem (1.1) in the case h(z) € L}, .(£2). This case will be appro-
priate in our paper.

Remark 1.2. The problem (1.1) when the nonlinearity satisfies the condition
(1.2) 0 < puF(x,s) < f(x,s)s for u>2/|s| > M,

where F(z,s) = [ f(x,t)dt has been studied either when h(x) € L*(Q) or
h(z) € Li, () (see [9, 21, 22]). We point out that the condition (1.2) implies

loc
that f has to be superlinear at infinity. So this kind of assumption is not

appropriate in our situation.

Let Hi(Q) be the usual Sobolev space under the norm

|wnz(1gvmwumam)?

We now consider following subspaces H of H}(2)
H= {u € Hy(Q): /Qh(z)|Vu|2d:c < JrOO} .
Then H is a Hilbert space with the norm
lulfy = [ ha)Vufds
and the scalar product (see [9, 22])
<u,v>H: /Q h(z)VuVudz, wu,v € H.

Furthermore we have ||ul|g1(q) < |[ul|n, v € H and the continuous embedding
H < H}(Q) = L9(2),2 < ¢ < 2" = 2% hold true. Moreover, the embedding
H — L?(Q) is compact.

Definition 1.1. We say that u € H is a weak solution of the problem (1.1) if

(1.3) /Qh(x)Vqupd:c f/ﬂf(:c,u)gad:c =0
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for all p € H.

2. Auxiliary results

We define the functional J : H — R given by

! 2dx — z,u)dx
(2.4) J(u)zi/gh(x)|Vu| dx /QF( ,u)d

=T(u)— P(u), ue€H,
where

t
F(x,t) = / f(z,s)ds, T(u)= % / h(z)|Vul?dz,
(2.5) 0 @
P(u)= | F(z,u)dx, u€ H.
Q

Firstly we remark that the critical points of the functional J correspond
to the weak solution of the problem (1.1). Moreover, due to the presence of
h(z) € L}, .(S2), in general, the functional 7' (and thus J) does not belong to
C1(H). This means that we cannot apply the classical mountain pass theorem
by Ambrossetti-Rabinowitz. In order to overcome this difficulty, we shall apply
a weak version of the mountain pass theorem introduced by D. M. Duc [12]. But

we first recall the following useful concept of weak continuous differentiability:

Definition 2.1. Let J be a functional from a Banach space Y into R. We say
that J is weakly continuously differentiable on Y if and only if three following
conditions are satisfied:
i) J is continuous on Y.
ii) For any u € Y there exists a linear map DJ(u) from Y into R such
that
lim J(u+tp) — J(u)
t—0 t
iii) For any ¢ € Y, the map u <DJ(u), gp> is continuous on Y.

= <DJ(u),<p>,V<p ev.

We denote by C} (V) the set of weakly continuously differentiable functionals
onY. Itis clear that C*(Y) C CL(Y), where C1(Y) is the set of all continuously
Fréchet differentiable functionals on Y. With similar arguments as those used
in the proof of Proposition 2.2 in [22], we conclude the following proposition
which concerns the smoothness of the functional J.

Proposition 2.1. The functional J given by (2.4) is weakly continuously dif-
ferentiable on H and we have

(DJ(u), @)= / h(z)VuVepdr — / f(z,u)pdx  for all u,p € H.
Q Q

By Proposition 2.1, the critical points of the functional J correspond to the
weak solutions of the problem (1.1).
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Proposition 2.2 (see Lemma 2.3 in [9]). The functional T given by (2.5) is
weakly lower semicontinuous on the space H.

Proposition 2.3. Let v € L>®(Q) such that Q7 = {z € Q : v(z) > 0} is an
open set in RV, Set

A := inf {/ h(z)|Vul*dz : / v(z)uide = 1}.
vell Ja Q
Then

i) S={ueH: [,v( defl}#(b
il) there exists ug € S fQ 7)|Vuo|?dz = A and ug > 0, ug # 0 in Q.
Proof. 1) Let u € C§°(Q1), u # 0 and u € H, then [, v(z)u®dz > 0.

Choose T € H as T = —2 a5 2 € QF andu:OaszGQ\QJr.
(fn+ v(z)uzdz)Q

Then
U2
(2.6) / v(x)utde = / ————dr =1.
0 ot fm Ju?dz
Hence S # ().
ii) Let {um} C H be a minimizing sequence, i.e.,
(2.7) /h(x)|Vum|2dac — A and /U(m)u?ndl' =1
Q Q

So {unm} is bounded in H. Then there exists a subsequence of {u,,} still
denoted by {u,,} such that u,, — @ in H and u,, — @ in L?(Q2). We have
€ S. Indeed,

1= lim v(m)ufndx:/v(ac)ﬁzdac
Q Q

m——+o00o

(from v € L>®(Q) we deduce [, v(z)(u} —0%)dz — 0). Then by the minimizing

m
properties of {u,,} and by the weakly lower semicontinuity of the functional
Jo b(x)|Vul*dz (see Proposition 2.2) we have

A =1lim inf / h(2)|Vum |2 dz > / h(z)|Vi|2dz > A.
m—+0oo [ Q

So we get A = [, h(z)|Vi|*de.

We have 1 € H and U is a minimizer of

inf{/ﬂh(zﬂVuFdx : /Qv(z)quz: 1}.

We show that || is a minimizer too. Since it € H C H}(Q2) then |[4] € H}(Q)
(see Lemma 7.6, p. 145 in [14]).

Moreover
/v(z)ﬁQd:c = / v(x)|i|*dz, so || € S.
Q Q
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Finally
A:/h(x)|Vﬁ|2:/h(:c)|V|ﬁ||2d:c.
Q Q

So || € H and [i] is a minimizer then G > 0. We suppose that @t = 0 then we
deduce that [, v(z)a*dz = 0, a contradiction. Set uo = [, uo > 0 and ug # 0
in Q. The proof of Proposition 2.3 is complete. ]

3. Main results

Let us introduce following hypotheses.

F3) There exists xg € Q such that 8(xg) > 0 where § is defined by F2).
Denoted by

Qg ={ze€Q:p(z) >0}
and assume that
h(z)|Vul|*dz
A= inf ‘[913—2
we€H(Qp) fQB B(z)udz

F4) There exist two positive constants 71, 72 such that

2F 2F
limﬂ§ﬁ<x\1<7§§ lim ﬂ

5 uniformly a.e. x € ),
s—0 S s——+00 S

fQ h(z)\Vu\de .

where Ay = inf,c g TP

Our main result is given by the following theorem.

Theorem 3.1. Assuming hypotheses F1)-F4) are fulfilled. Then the problem
(1.1) has at least one non-negative non-trivial weak solution in space H.

In order to prove Theorem 3.1, we need some following propositions.

Proposition 3.1. Assuming F1), F2), F4) are fulfilled. Then there exist o, p >
0 such that J(u) > o if ||ul|g = p. Moreover, there exists oo € H such that
J(tgg) = —o0 as t — +o0.

Proof. By F4) lim,_, 1 o 2F§f’s) > 75 uniformly a.e. x € Q, we deduce that there
exists sg > 0 such that % > 1 for all s > sg or F(x,s) > %7252 for all
s > so uniformly a.e. z € Q. We choose t € (0, so] such that F(z,t9) < 3723
a.e. x € (.

Fix ¢ > 0. There exists B(e, o) such that F(z,t9) > %(m2 — &)t — B(e, to).
Denote B(e) = sup,, <., B(e,to). We obtain for any given ¢ > 0 there exists
B = B(e) such that

F(x,8) > =(m9 —€)s* = B for all s € (0, +00) a.e. x € Q.

N =
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Remark that by F2) we deduce limg_, 4 o0 F(:f,’s) =0ae x€Qandqg>2 Fix
arbitrarily e > 0. In the same way, using the second inequality of F4) and F2),

It follows that there exists A = A(e) > 0 such that
2F(z,5) < (11 +¢)s® +2A(g)s? for all s > 0 a.e. x € Q.

For any given € > 0 there exists A = A(e) > 0, B = B(e) > 0 such that

1 1
—(rg —€)s? = B < F(x,s) < 5(71 +¢)s? + As? for all s € (0, +00) a.e. z € Q.

2
Now we choose € > 0 so that 71 + & < A\; < 75 — €, we have
1
(38) 7 = 3llulf ~ | oo
1, ., 1 )
> ullg — 5 [ (e+m)ude — | Alul|lde
2 2 Ja e
1 e+1n
> 501- Mlul[7 — Ak|lul|,.
2 A1
With ¢ > 2, choose p = ||u||g small enough then we have
1 e+ 11
a=S(1- lullF; — Akl[ul|F; > 0.
2 A1
Moreover,
1 1
J(w) < Sllullly — 5 | (72— e)|ufda + BI9.
2 2 Jo

Choose @9 € C3°(2), 0 > 0 such that ¢g is a Aj-eigen-function, that is, it
satisfies Ay [, pgde = [, h(z)|Vu|?*dz. Denote ug = tg then
1 Ty — €
J(uo) < 5 (1= = —=)ltP[loll® + BIQ| — ~o00 as t = +oc.
2 AL .
Proposition 3.2. Assuming hypotheses F1)-F4) are fulfilled. Let {u.,} be a
Palais Smale sequence in H, i.e.,
Tim J(ug) =, lm (1D () = 0.
Suppose that {u,,} is not bounded in H. Then there exists a subsequence of
{tum} until denoted {u,,} such that ||um,||lg — +o0 as m — +oo. Pulting
W = ;- Then there exists a subsequence {wm,} of {wm} such that
{Wm,, } = w in H satisfying
i) w#0 in Q,
if) w > 0 in Q,
iii) —div(h(z)Vw) = B(x)w in 2.

Proof. We have ||wy, ||z = 1, so {wy,,} is bounded in H then there exists a
subsequence {uy,, } such that

Wy, — W in H,

Wi, — w in L2(Q),
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Wy, — W a.e. in L

i) Arguing by contradiction, if w = 0, then w,,, — 0 in L*(Q) and

DJ(up, M -
DJ () (W) — 0 (from definition of PS sequence).
[ |
So, a fortiori
DJ(umk)(;’Lmk) 0.
|l

This yields
/h($)|Vwmk|2dx—/ Mwikdxﬁo,
Q
L

1_/fxumk de$—>0.

is bounded and w,,, — 0 in L2(£2), we get relation 1 = 0. Hence

Since £&4ma)

we must hz;ve w # 0.
ii) Knowing that DJCum,)l0) _, 0,Vo € H, p # 0. We deduce

el [1
)V, - Vodr — Ty Uy, )pdT
Ja o Vipde = Jo F@ um)pds oy
[, ||
Since f(z,s) =0 for s <0
Jo M)V, - Vodr — [ f(z,ul, )ede 0
[t || ’
zuk ) uk
/ h(z)Vwp, - Vodz — / T ) wdr — 0.
0 o  Ume |lu kll
xr ’IJ,+
Since f(—&—) is bounded, it has a subsequence still denoted by f(—b—), it
uh, Uiy,
converges weakly in L? to some function § € L>. Then,
[, ug,)
/ h(2)Vwy, - Vedr — f’“w;{lk edz — 0,
Q Q Umy,

/ h(z)Vw - Veodr — | 0(z)wtpdz =0,V € H.
Q Q

Choosing ¢ = w~ we have

/ h(z)Vw - Vw ™ dz — / O(x)wtw dr = 0,
Q

Q

/ h(@)| Ve [Pdz = 0
Q

which implies w™ = 0 then w > 0.
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So w > 0 satisfies the equation
—div(h(z)Vw) = 0(z)w in Q.
Moreover, for any Q° CC Q, we have h € L}, (), w(z) # 0, w(xz) > 0 in
and
—div(h(z)Vw) = 0(x)w in Q.
By the Hanark inequality (see [14] Theorem 8.20 and Corollary 8.21), it

follows that w(z) > 0 in Q. This implies that w(x) > 0 in Q.
iii) Since w > 0, Uy, — 400 a.e. in Q. So

M — B(x) a.e. x € Q,
S (@ tmy) (f; Ume) 0(z) in L2(Q)

this yields 8(z) = 6(x). Then w verifies the equation

/ h(z)VwVedr = / B(x)wedz for all p € H
Q Q

SO
—div(h(z)Vw) = (z)w in .
The proof of Proposition 3.2 is complete. (|

Proposition 3.3. Assuming hypotheses F1)-F4) are fulfilled. Then the func-
tional J : H — R is defined by (2.4) satisfies the Palais-Smale condition on
H.

Proof. Let {u,,} be a sequence in H such that
1DJ (um)|[ = = 0.

lim J(up) = ¢, lim
m—o0 m——+o0o
First, we shall prove that {u,,} is bounded in H. We suppose by contradiction
that {u,,} is not bounded in H. Then there exists a subsequence still denoted
{um} such that ||um,||g — +00 as m — 4o0c0. Then putting w,, = oty by
Proposition 3.2, we have the subsequence {wy,, } of {wy,} satisfying wy,, — w
in H and

i) w#0in Q,
ii) w > 01in Q,
ili) —div(h(z)Vw) = B(z)w in .
Hence
/ h(z)|Vw|?dz = / B(x)w?dx.
Q Q
So we have

. Jo b(@)| Vw]?da
Jo Blz)wdz
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Recall Qs = {z € Q: 3(x) > 0} C Q, we deduce

Vw 2clac Vw 2dx fQ |Vw|2dx
1= Q Q
o x)w?dx w2dr — w2dzx
Q Qp Qp
fQ Vu|2dac
inf. ————— = Ajz.
T weH(Qp) ng x)u?dx g

By F3) we have a contradiction. So we deduce that all Palais Smale sequences
of the functional J are bounded in H.

Next we prove that {u,,} has a subsequence converging strongly in H. Since
{um} is bounded in H, H is a Hilbert space, there exists a subsequence {un,, }

such that it converges weakly to some u in H and {u,,, } converge strongly in
L?(2). Then by Proposition 2.2 we find that

(3.9) T(u) < kl;n;o inf T'(tm,, ).
Now we prove limy_, oo T (tm, ) = T(u). Indeed,
<DT(umk),umk - u>: <DJ(umk),umk - u>+<DP(umk),umk - u>
By the definition of (PS) sequence we have
lim (DJ(um, ), tm, —u)=0.

k—+oo

From F2)

|<DP(umk y Umy, — | -

/fxumk (U, — u)dx
<.
Q

|umk||umk - u|d$
3 3
<C </ |umk|2dac> . </ |thm,, — u|2dx)
Q Q
Since uy,, — u in L?(Q) we have

lim (DP(tm, ), tim, —u)="0.

k—+oo

f(z, U,

Um

k

Hence
im (DT (tm, ), U, — u)=0.

k—+oo
On the other hand, since T is convex the following inequality holds true
T(u) — T (tm,) > <DT(umk), U — umk>.
Letting k£ — 400 we have
T(u)— HUm T(um,) = lm [T(u)—T(tm,)]

k—+oo k—+oo

> lim (DT (um,),u — tm, )= 0.

k—+oo
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This implies that
(3.10) T(u) > lm T(tp,).

k— o0
From (3.9), (3.10) we get limg— 400 T'(um, ) = T(u).

Now we prove that the sequence {u,y,, } converges strongly to u in H. Indeed,
we suppose by contradiction that {u,,, } is not converges strongly to u in H.
Then there exist a constant ¢y > 0 and a subsequence {umkj} of {tm, } such
that ||umkj —ullg > € forj=1,2,....

Recalling inequality

2 2

a+f

a—p
5| T

2

1
- 5(|oé|2 +16/?), Va,B€R.

We deduce that for any j =1,2,...
umkj +u

1 1
5T (um,,) + 5T (u) = T( )
(3.11) % o2 2
€0
> Zl'umkj - u||%—] = (5)2

Um, +u
J

2

Again instead of the remark that since {
H, applying Proposition 2.2 we have

} converges weakly to w in

Umy, . +u
T(u) < lim infT(—~——

j—+oo

).

Then from (3.11), letting j — oo we obtain

T(u)— Tim inf T (s i 5> (@2

w)— lim infT(—L—— —

j—+oo 2 -2

which is a contradiction. Therefore, {u,,, } converges strongly to u in H. Thus
the functional J satisfies the Palais-Smale condition on H. The proof of Propo-

sition 3.3 is complete. (I

Proposition 3.4. i) J(0) = 0.
ii) The acceptable set G = {y € C([0,1], H) : v(0) = 0,7(1) = uo} is not
empty (with ug in Proposition 3.1).

Proof. 1) Follows from F1) and the definition of J we have J(0)=0.
i) Let () = tug, so v(0) = 0,7(1) = ug, then y(t) € G and G # 0. O

Proof of Theorem 3.1. By Propositions 3.1-3.4, all assumptions of the varia-
tions of the mountain pass theorem introduced in [12] are satisfied. Therefore
there exists w € H such that

0 <a< J(W)=inf{max J(v([0,1])) : v € G}
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and <DJ(€V),1)>: 0 for all v € H, i.e., W is a weak solution of the problem

(1.1

). Moreover since J(w) > 0 = J(0), W is a nontrivial weak solution of the

problem (1.1). We have

/ h(x)VwVdr — / fz,W)pdx =0, Vo e H.
Q Q

Choose ¢ = W, f(z,w) =0 as w < 0. So we obtain

/ h(z)VwVwdr =0 or ||[w]|g=0.
Q

Then w > 0, is a weak solution non-negative non-trivial of the problem (1.1).

Theorem 3.1 is completely proved. O
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