
Bull. Korean Math. Soc. 49 (2012), No. 4, pp. 737–748
http://dx.doi.org/10.4134/BKMS.2012.49.4.737

EXISTENCE OF WEAK NON-NEGATIVE SOLUTIONS

FOR A CLASS OF NONUNIFORMLY

BOUNDARY VALUE PROBLEM

Trinh Thi Minh Hang and Hoang Quoc Toan

Abstract. The goal of this paper is to study the existence of non-trivial
non-negative weak solution for the nonlinear elliptic equation:

−div(h(x)∇u) = f(x, u) in Ω

with Dirichlet boundary condition in a bounded domain Ω ⊂ R
N , N ≥ 3,

where h(x) ∈ L1
loc

(Ω), f(x, s) has asymptotically linear behavior. The

solutions will be obtained in a subspace of the space H1
0 (Ω) and the

proofs rely essentially on a variation of the mountain pass theorem in
[12].

1. Introduction

Let Ω be a bounded domain in R
N , N ≥ 3 with smooth boundary ∂Ω.

We study the existence of non-trivial weak solution of the following Dirichlet
problem

(1.1)

{

−div(h(x)∇u) = f(x, u) in Ω

u(x) = 0 on ∂Ω,

where h(x) ∈ L1
loc(Ω), h(x) ≥ 1 a.e. x ∈ Ω.

Due to the presence of h(x) ∈ L1
loc(Ω), the problem now may be non-uniform

in sense that the functional associated to the problem may be infinity for some
u in H1

0 (Ω). In what follow, we deduce the problem (1.1) to a uniform one
by using an appropriate weighted Sobolev space. Then applying a variation
of the mountain pass theorem in [12], we prove that the problem (1.1) admits
a non-trivial non-negative weak solution in a subspace of the H1

0 (Ω). Let us
introduce some hypotheses:
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F1) f : Ω× R −→ R is a Caratheodory function satisfying
f(x, s) = 0 for all s ≤ 0, a.e. x ∈ Ω.

F2) There exists a constant C > 0 such that | f(x,s)
s

| ≤ C a.e. x ∈ Ω,
∀s ∈ (0,+∞) and f is “asymptotically linear” in the sense that there

exists β ∈ C(Ω) such that β(x) = lims→+∞
f(x,s)

s
uniformly a.e. x ∈ Ω.

Firstly, we introduce some following remark:

Remark 1.1. There is a rich literature dealing with asymptotically linear prob-
lem and existence results on bounded domain or unbounded domain in the
case that h(x) = 1 which have been obtained via variational methods (see
[1, 4, 18, 19, 20] and the reference therein). However, to the best of our knowl-
edge, there has never been any study on the existence results of asymptotically
linear of the problem (1.1) in the case h(x) ∈ L1

loc(Ω). This case will be appro-
priate in our paper.

Remark 1.2. The problem (1.1) when the nonlinearity satisfies the condition

(1.2) 0 < µF (x, s) ≤ f(x, s)s for µ > 2, |s| ≥ M,

where F (x, s) =
∫ s

0
f(x, t)dt has been studied either when h(x) ∈ L∞(Ω) or

h(x) ∈ L1
loc(Ω) (see [9, 21, 22]). We point out that the condition (1.2) implies

that f has to be superlinear at infinity. So this kind of assumption is not
appropriate in our situation.

Let H1
0 (Ω) be the usual Sobolev space under the norm

||u|| =

(
∫

Ω

(|∇u|2 + |u|2)dx

)
1
2

.

We now consider following subspaces H of H1
0 (Ω)

H =

{

u ∈ H1
0 (Ω) :

∫

Ω

h(x)|∇u|2dx < +∞

}

.

Then H is a Hilbert space with the norm

||u||2H =

∫

Ω

h(x)|∇u|2dx

and the scalar product (see [9, 22])

〈

u, v
〉

H
=

∫

Ω

h(x)∇u∇vdx, u, v ∈ H.

Furthermore we have ||u||H1
0 (Ω) ≤ ||u||H , u ∈ H and the continuous embedding

H →֒ H1
0 (Ω) →֒ Lq(Ω), 2 ≤ q ≤ 2* = 2N

N−2 hold true. Moreover, the embedding

H →֒ L2(Ω) is compact.

Definition 1.1. We say that u ∈ H is a weak solution of the problem (1.1) if

(1.3)

∫

Ω

h(x)∇u∇ϕdx −

∫

Ω

f(x, u)ϕdx = 0
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for all ϕ ∈ H.

2. Auxiliary results

We define the functional J : H −→ R given by

(2.4)
J(u) =

1

2

∫

Ω

h(x)|∇u|2dx−

∫

Ω

F (x, u)dx

= T (u)− P (u), u ∈ H,

where

(2.5)

F (x, t) =

∫ t

0

f(x, s)ds, T (u) =
1

2

∫

Ω

h(x)|∇u|2dx,

P (u) =

∫

Ω

F (x, u)dx, u ∈ H.

Firstly we remark that the critical points of the functional J correspond
to the weak solution of the problem (1.1). Moreover, due to the presence of
h(x) ∈ L1

loc(Ω), in general, the functional T (and thus J) does not belong to
C1(H). This means that we cannot apply the classical mountain pass theorem
by Ambrossetti-Rabinowitz. In order to overcome this difficulty, we shall apply
a weak version of the mountain pass theorem introduced by D. M. Duc [12]. But
we first recall the following useful concept of weak continuous differentiability:

Definition 2.1. Let J be a functional from a Banach space Y into R. We say
that J is weakly continuously differentiable on Y if and only if three following
conditions are satisfied:

i) J is continuous on Y .
ii) For any u ∈ Y there exists a linear map DJ(u) from Y into R such

that

lim
t→0

J(u+ tϕ)− J(u)

t
=

〈

DJ(u), ϕ
〉

, ∀ϕ ∈ Y.

iii) For any ϕ ∈ Y , the map u 7→
〈

DJ(u), ϕ
〉

is continuous on Y .

We denote by C1
w(Y ) the set of weakly continuously differentiable functionals

on Y . It is clear that C1(Y ) ⊂ C1
w(Y ), where C1(Y ) is the set of all continuously

Fréchet differentiable functionals on Y . With similar arguments as those used
in the proof of Proposition 2.2 in [22], we conclude the following proposition
which concerns the smoothness of the functional J .

Proposition 2.1. The functional J given by (2.4) is weakly continuously dif-

ferentiable on H and we have

〈

DJ(u), ϕ
〉

=

∫

Ω

h(x)∇u∇ϕdx −

∫

Ω

f(x, u)ϕdx for all u, ϕ ∈ H.

By Proposition 2.1, the critical points of the functional J correspond to the
weak solutions of the problem (1.1).
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Proposition 2.2 (see Lemma 2.3 in [9]). The functional T given by (2.5) is

weakly lower semicontinuous on the space H.

Proposition 2.3. Let v ∈ L∞(Ω) such that Ω+ = {x ∈ Ω : v(x) > 0} is an

open set in R
N . Set

Λ := inf
u∈H

{
∫

Ω

h(x)|∇u|2dx :

∫

Ω

v(x)u2dx = 1

}

.

Then

i) S = {u ∈ H :
∫

Ω v(x)u2dx = 1} 6= ∅,
ii) there exists u0 ∈ S :

∫

Ω h(x)|∇u0|2dx = Λ and u0 ≥ 0, u0 6= 0 in Ω.

Proof. i) Let u ∈ C∞
0 (Ω+), u 6= 0 and u ∈ H , then

∫

Ω+ v(x)u2dx > 0.

Choose u ∈ H as u = u(x)

(
∫
Ω+ v(x)u2dx)

1
2

as x ∈ Ω+ and u = 0 as x ∈ Ω \ Ω+.

Then

(2.6)

∫

Ω

v(x)u2dx =

∫

Ω+

v(x)
u2

∫

Ω+ v(x)u2dx
dx = 1.

Hence S 6= ∅.
ii) Let {um} ⊂ H be a minimizing sequence, i.e.,

(2.7)

∫

Ω

h(x)|∇um|2dx −→ Λ and

∫

Ω

v(x)u2
mdx = 1.

So {um} is bounded in H . Then there exists a subsequence of {um} still
denoted by {um} such that um ⇀ û in H and um → û in L2(Ω). We have
û ∈ S. Indeed,

1 = lim
m→+∞

∫

Ω

v(x)u2
mdx =

∫

Ω

v(x)û2dx

(from v ∈ L∞(Ω) we deduce
∫

Ω v(x)(u2
m− û2)dx → 0). Then by the minimizing

properties of {um} and by the weakly lower semicontinuity of the functional
∫

Ω
h(x)|∇u|2dx (see Proposition 2.2) we have

Λ = lim inf
m→+∞

∫

Ω

h(x)|∇um|2dx ≥

∫

Ω

h(x)|∇û|2dx ≥ Λ.

So we get Λ =
∫

Ω
h(x)|∇û|2dx.

We have û ∈ H and û is a minimizer of

inf

{
∫

Ω

h(x)|∇u|2dx :

∫

Ω

v(x)u2dx = 1

}

.

We show that |û| is a minimizer too. Since û ∈ H ⊂ H1
0 (Ω) then |û| ∈ H1

0 (Ω)
(see Lemma 7.6, p. 145 in [14]).

Moreover
∫

Ω

v(x)û2dx =

∫

Ω

v(x)|û|2dx, so |û| ∈ S.
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Finally

Λ =

∫

Ω

h(x)|∇û|2 =

∫

Ω

h(x)|∇|û||2dx.

So |û| ∈ H and |û| is a minimizer then û ≥ 0. We suppose that û = 0 then we
deduce that

∫

Ω
v(x)û2dx = 0, a contradiction. Set u0 = |û|, u0 ≥ 0 and u0 6= 0

in Ω. The proof of Proposition 2.3 is complete. �

3. Main results

Let us introduce following hypotheses.

F3) There exists x0 ∈ Ω such that β(x0) > 0 where β is defined by F2).
Denoted by

Ωβ = {x ∈ Ω : β(x) > 0}

and assume that

Λβ = inf
u∈H(Ωβ)

∫

Ωβ
h(x)|∇u|2dx

∫

Ωβ
β(x)u2dx

> 1.

F4) There exist two positive constants τ1, τ2 such that

lim
s→0

2F (x, s)

s2
≤ τ1 < λ1 < τ2 ≤ lim

s→+∞

2F (x, s)

s2
uniformly a.e. x ∈ Ω,

where λ1 = infu∈H

∫
Ω
h(x)|∇u|2dx∫

Ω
u2dx

.

Our main result is given by the following theorem.

Theorem 3.1. Assuming hypotheses F1)-F4) are fulfilled. Then the problem

(1.1) has at least one non-negative non-trivial weak solution in space H.

In order to prove Theorem 3.1, we need some following propositions.

Proposition 3.1. Assuming F1), F2), F4) are fulfilled. Then there exist α, ρ >

0 such that J(u) ≥ α if ||u||H = ρ. Moreover, there exists ϕ0 ∈ H such that

J(tϕ0) → −∞ as t → +∞.

Proof. By F4) lims→+∞
2F (x,s)

s2
≥ τ2 uniformly a.e. x ∈ Ω, we deduce that there

exists s0 > 0 such that 2F (x,s)
s2

≥ τ2 for all s > s0 or F (x, s) ≥ 1
2τ2s

2 for all

s > s0 uniformly a.e. x ∈ Ω. We choose t0 ∈ (0, s0] such that F (x, t0) <
1
2τ2t

2
0

a.e. x ∈ Ω.
Fix ε > 0. There exists B(ε, t0) such that F (x, t0) ≥

1
2 (τ2 − ε)t20 −B(ε, t0).

Denote B(ε) = supt0≤s0
B(ε, t0). We obtain for any given ε > 0 there exists

B = B(ε) such that

F (x, s) ≥
1

2
(τ2 − ε)s2 −B for all s ∈ (0,+∞) a.e. x ∈ Ω.
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Remark that by F2) we deduce lims→+∞
F (x,s)

sq
= 0 a.e. x ∈ Ω and q > 2. Fix

arbitrarily ε > 0. In the same way, using the second inequality of F4) and F2),
It follows that there exists A = A(ε) > 0 such that

2F (x, s) ≤ (τ1 + ε)s2 + 2A(ε)sq for all s > 0 a.e. x ∈ Ω.

For any given ε > 0 there exists A = A(ε) > 0, B = B(ε) > 0 such that

1

2
(τ2 − ε)s2 −B ≤ F (x, s) ≤

1

2
(τ1 + ε)s2 +Asq for all s ∈ (0,+∞) a.e. x ∈ Ω.

Now we choose ε > 0 so that τ1 + ε < λ1 < τ2 − ε, we have

J(u) =
1

2
||u||2H −

∫

Ω

F (x, u)dx(3.8)

≥
1

2
||u||2H −

1

2

∫

Ω

(ε+ τ1)u
2dx−

∫

Ω

A|u|qdx

≥
1

2
(1−

ε+ τ1

λ1
)||u||2H −Ak||u||qH .

With q > 2, choose ρ = ||u||H small enough then we have

α =
1

2
(1−

ε+ τ1

λ1
)||u||2H −Ak||u||qH > 0.

Moreover,

J(u) ≤
1

2
||u||2H −

1

2

∫

Ω

(τ2 − ε)|u|2dx+B|Ω|.

Choose ϕ0 ∈ C∞
0 (Ω), ϕ0 > 0 such that ϕ0 is a λ1-eigen-function, that is, it

satisfies λ1

∫

Ω
ϕ2
0dx =

∫

Ω
h(x)|∇u|2dx. Denote u0 = tϕ0 then

J(u0) ≤
1

2
(1−

τ2 − ε

λ1
)|t|2||ϕ0||

2 +B|Ω| → −∞ as t → +∞.
�

Proposition 3.2. Assuming hypotheses F1)-F4) are fulfilled. Let {um} be a

Palais Smale sequence in H, i.e.,

lim
m→∞

J(um) = c, lim
m→+∞

||DJ(um)||H* = 0.

Suppose that {um} is not bounded in H. Then there exists a subsequence of

{um} until denoted {um} such that ||um||H → +∞ as m → +∞. Putting

wm = um

||um||H
. Then there exists a subsequence {wmk

} of {wm} such that

{wmk
} ⇀ w in H satisfying

i) w 6= 0 in Ω,
ii) w > 0 in Ω,
iii) −div(h(x)∇w) = β(x)w in Ω.

Proof. We have ||wm||H = 1, so {wm} is bounded in H then there exists a
subsequence {umk

} such that

wmk
⇀ w in H,

wmk
→ w in L2(Ω),
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wmk
→ w a.e. in Ω.

i) Arguing by contradiction, if w = 0, then wmk
→ 0 in L2(Ω) and

DJ(umk
)(umk

)

||umk
||H

→ 0 (from definition of PS sequence).

So, a fortiori
DJ(umk

)(umk
)

||umk
||2H

→ 0.

This yields
∫

Ω

h(x)|∇wmk
|2dx−

∫

Ω

f(x, umk
)

umk

w2
mk

dx → 0,

||wmk
||2H −

∫

Ω

f(x, umk
)

umk

w2
mk

dx → 0,

1−

∫

Ω

f(x, umk
)

umk

w2
mk

dx → 0.

Since
f(x,umk

)

umk

is bounded and wmk
→ 0 in L2(Ω), we get relation 1 = 0. Hence

we must have w 6= 0.

ii) Knowing that
DJ(umk

)(ϕ)

||ϕ||||umk
|| → 0, ∀ϕ ∈ H,ϕ 6= 0. We deduce

∫

Ω
h(x)∇umk

· ∇ϕdx −
∫

Ω
f(x, umk

)ϕdx

||umk
||

→ 0, ∀ϕ ∈ H.

Since f(x, s) = 0 for s ≤ 0
∫

Ω h(x)∇umk
· ∇ϕdx−

∫

Ω f(x, u+
mk

)ϕdx

||umk
||

→ 0,

∫

Ω

h(x)∇wmk
· ∇ϕdx−

∫

Ω

f(x, u+
mk

)

u+
mk

u+
mk

||u+
mk

||
ϕdx → 0.

Since
f(x,u+

mk
)

u
+
mk

is bounded, it has a subsequence still denoted by
f(x,u+

mk
)

u
+
mk

, it

converges weakly in L2 to some function θ ∈ L∞. Then,
∫

Ω

h(x)∇wmk
· ∇ϕdx −

∫

Ω

f(x, u+
mk

)

u+
mk

w+
mk

ϕdx → 0,

∫

Ω

h(x)∇w · ∇ϕdx−

∫

Ω

θ(x)w+ϕdx = 0, ∀ϕ ∈ H.

Choosing ϕ = w− we have
∫

Ω

h(x)∇w · ∇w−dx−

∫

Ω

θ(x)w+w−dx = 0,

∫

Ω

h(x)|∇w−|2dx = 0

which implies w− = 0 then w ≥ 0.
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So w ≥ 0 satisfies the equation

−div(h(x)∇w) = θ(x)w in Ω.

Moreover, for any Ω’ ⊂⊂ Ω, we have h ∈ L1
loc(Ω

’), w(x) 6= 0, w(x) ≥ 0 in Ω’

and

−div(h(x)∇w) = θ(x)w in Ω’.

By the Hanark inequality (see [14] Theorem 8.20 and Corollary 8.21), it
follows that w(x) > 0 in Ω’. This implies that w(x) > 0 in Ω.

iii) Since w > 0, umk
→ +∞ a.e. in Ω. So

f(x, umk
)

umk

→ β(x) a.e. x ∈ Ω,

f(x, umk
)

umk

→ θ(x) in L2(Ω)

this yields β(x) = θ(x). Then w verifies the equation
∫

Ω

h(x)∇w∇ϕdx =

∫

Ω

β(x)wϕdx for all ϕ ∈ H

so

−div(h(x)∇w) = β(x)w in Ω.

The proof of Proposition 3.2 is complete. �

Proposition 3.3. Assuming hypotheses F1)-F4) are fulfilled. Then the func-

tional J : H → R is defined by (2.4) satisfies the Palais-Smale condition on

H.

Proof. Let {um} be a sequence in H such that

lim
m→∞

J(um) = c, lim
m→+∞

||DJ(um)||H* = 0.

First, we shall prove that {um} is bounded in H . We suppose by contradiction
that {um} is not bounded in H . Then there exists a subsequence still denoted
{um} such that ||um||H → +∞ as m → +∞. Then putting wm = um

||um||H
, by

Proposition 3.2, we have the subsequence {wmk
} of {wm} satisfying wmk

⇀ w

in H and
i) w 6= 0 in Ω,
ii) w > 0 in Ω,
iii) −div(h(x)∇w) = β(x)w in Ω.
Hence

∫

Ω

h(x)|∇w|2dx =

∫

Ω

β(x)w2dx.

So we have

1 =

∫

Ω h(x)|∇w|2dx
∫

Ω
β(x)w2dx

.
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Recall Ωβ = {x ∈ Ω : β(x) > 0} ⊂ Ω, we deduce

1 =

∫

Ω h(x)|∇w|2dx
∫

Ω
β(x)w2dx

≥

∫

Ω h(x)|∇w|2dx
∫

Ωβ
β(x)w2dx

≥

∫

Ωβ
h(x)|∇w|2dx

∫

Ωβ
β(x)w2dx

≥ inf
u∈H(Ωβ)

∫

Ωβ
h(x)|∇u|2dx

∫

Ωβ
β(x)u2dx

= Λβ .

By F3) we have a contradiction. So we deduce that all Palais Smale sequences
of the functional J are bounded in H .

Next we prove that {um} has a subsequence converging strongly in H . Since
{um} is bounded in H , H is a Hilbert space, there exists a subsequence {umk

}
such that it converges weakly to some u in H and {umk

} converge strongly in
L2(Ω). Then by Proposition 2.2 we find that

(3.9) T (u) ≤ lim
k→∞

inf T (umk
).

Now we prove limk→+∞ T (umk
) = T (u). Indeed,

〈

DT (umk
), umk

− u
〉

=
〈

DJ(umk
), umk

− u
〉

+
〈

DP (umk
), umk

− u
〉

.

By the definition of (PS) sequence we have

lim
k→+∞

〈

DJ(umk
), umk

− u
〉

= 0.

From F2)

|
〈

DP (umk
), umk

− u
〉

| =

∣

∣

∣

∣

∫

Ω

f(x, umk
)(umk

− u)dx

∣

∣

∣

∣

≤

∫

Ω

∣

∣

∣

∣

f(x, umk)

umk

∣

∣

∣

∣

|umk
||umk

− u|dx

≤ C

(
∫

Ω

|umk
|2dx

)
1
2

.

(
∫

Ω

|umk
− u|2dx

)
1
2

.

Since umk
→ u in L2(Ω) we have

lim
k→+∞

〈

DP (umk
), umk

− u
〉

= 0.

Hence

lim
k→+∞

〈

DT (umk
), umk

− u
〉

= 0.

On the other hand, since T is convex the following inequality holds true

T (u)− T (umk
) ≥

〈

DT (umk
), u− umk

〉

.

Letting k → +∞ we have

T (u)− lim
k→+∞

T (umk
) = lim

k→+∞
[T (u)− T (umk

)]

≥ lim
k→+∞

〈

DT (umk
), u− umk

〉

= 0.
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This implies that

(3.10) T (u) ≥ lim
k→+∞

T (umk
).

From (3.9), (3.10) we get limk→+∞ T (umk
) = T (u).

Now we prove that the sequence {umk
} converges strongly to u inH . Indeed,

we suppose by contradiction that {umk
} is not converges strongly to u in H .

Then there exist a constant ǫ0 > 0 and a subsequence {umkj
} of {umk

} such

that ||umkj
− u||H ≥ ǫ0 for j = 1, 2, . . . .

Recalling inequality
∣

∣

∣

∣

α+ β

2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

α− β

2

∣

∣

∣

∣

2

=
1

2
(|α|2 + |β|2), ∀α, β ∈ R.

We deduce that for any j = 1, 2, . . .

(3.11)

1

2
T (umkj

) +
1

2
T (u)− T (

umkj
+ u

2
)

≥
1

4
||umkj

− u||2H = (
ǫ0

2
)2.

Again instead of the remark that since {
umkj

+u

2 } converges weakly to u in
H , applying Proposition 2.2 we have

T (u) ≤ lim
j→+∞

inf T (
umkj

+ u

2
).

Then from (3.11), letting j → ∞ we obtain

T (u)− lim
j→+∞

inf T (
umkj

+ u

2
) ≥ (

ǫ0

2
)2 > 0

which is a contradiction. Therefore, {umk
} converges strongly to u in H . Thus

the functional J satisfies the Palais-Smale condition on H . The proof of Propo-
sition 3.3 is complete. �

Proposition 3.4. i) J(0) = 0.
ii) The acceptable set G = {γ ∈ C([0, 1], H) : γ(0) = 0, γ(1) = u0} is not

empty (with u0 in Proposition 3.1).

Proof. i) Follows from F1) and the definition of J we have J(0)=0.
ii) Let γ(t) = tu0, so γ(0) = 0, γ(1) = u0, then γ(t) ∈ G and G 6= ∅. �

Proof of Theorem 3.1. By Propositions 3.1-3.4, all assumptions of the varia-
tions of the mountain pass theorem introduced in [12] are satisfied. Therefore
there exists w̃ ∈ H such that

0 < α ≤ J(w̃) = inf{maxJ(γ([0, 1])) : γ ∈ G}
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and
〈

DJ(w̃), v
〉

= 0 for all v ∈ H , i.e., w̃ is a weak solution of the problem
(1.1). Moreover since J(w̃) > 0 = J(0), w̃ is a nontrivial weak solution of the
problem (1.1). We have

∫

Ω

h(x)∇w̃∇ϕdx −

∫

Ω

f(x, w̃)ϕdx = 0, ∀ϕ ∈ H.

Choose ϕ = w̃-, f(x,w) = 0 as w ≤ 0. So we obtain
∫

Ω

h(x)∇w̃∇w̃-dx = 0 or ||w̃-||H = 0.

Then w̃ ≥ 0, is a weak solution non-negative non-trivial of the problem (1.1).
Theorem 3.1 is completely proved. �
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