Honam Mathematical J. **36** (2014), No. 1, pp. 029–032 http://dx.doi.org/10.5831/HMJ.2014.36.1.29

SELF-ADJOINT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG \mathcal{L}

JOO HO KANG* AND SANGKI LEE

Abstract. Given operators X and Y acting on a separable Hilbert space \mathcal{H} , an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate self-adjoint interpolation problems for operators in a tridiagonal algebra : Let \mathcal{L} be a subspace lattice acting on a separable complex Hilbert space \mathcal{H} and let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators acting on \mathcal{H} . Then the following are equivalent:

(1) There exists a self-adjoint operator $A = (a_{ij})$ in Alg \mathcal{L} such that AX = Y.

(2) There is a bounded real sequence $\{\alpha_n\}$ such that $y_{ij} = \alpha_i x_{ij}$ for $i, j \in \mathbb{N}$.

1. Introduction

Let \mathcal{C} be a subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of all operators acting on a Hilbert space \mathcal{H} and let X and Y be operators acting on \mathcal{H} . An *interpolation question* for \mathcal{C} asks for which X and Y is there a bounded operator $A \in \mathcal{C}$ such that AX = Y. A variation, the 'n-operator interpolation problems', asks for an operator A such that $AX_i = Y_i$ for fixed finite collections $\{X_1, X_2, \dots, X_n\}$ and $\{Y_1, Y_2, \dots, Y_n\}$. The *n*-operator interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison[4]. In case \mathcal{U} is a nest algebra, the (one-operator) interpolation problem was solved by Lance[5]: his result was extended by Hopenwasser[2] to the case that \mathcal{U} is a CSL-algebra. Munch[6] obtained conditions for interpolation in case A is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser[3] once again extended the

Received November 20, 2013. Accepted January 20, 2014.

²⁰¹⁰ Mathematics Subject Classification. 47L35.

Key words and phrases. self-adjoint interpolation, CSL-algebra, tridiagonal algebra, $\mathrm{Alg}\mathcal{L}.$

This paper is supported by Daegu University Grant(2013).

^{*}Corresponding author

Joo Ho Kang^{*} and SangKi Lee

interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser's paper also contains a sufficient condition for interpolation n-operators, although necessity was not proved in that paper.

We establish some notations and conventions. A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is CSL, Alg \mathcal{L} is mathcalled a CSL-algebra. The symbol Alg \mathcal{L} is the algebra of all bounded operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let x and y be two vectors in a Hilbert space \mathcal{H} . Then $\langle x, y \rangle$ means the inner product of the vectors x and y. Let Mbe a subset of a Hilbert space \mathcal{H} . Then \overline{M} means the closure of M and \overline{M}^{\perp} the orthogonal complement of \overline{M} . Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers.

2. Results

Let \mathcal{H} be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \cdots\}$. Let x_1, x_2, \cdots, x_n be vectors in \mathcal{H} . Then $[x_1, x_2, \cdots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \cdots, x_n . Let \mathcal{L} be the subspace lattice generated by the subspaces $[e_{2k-1}], [e_{2k-1}, e_{2k}, e_{2k+1}]$ $(k = 1, 2, \cdots)$. Then the algebra Alg \mathcal{L} is mathcalled a tridiagonal algebra which was introduced by F. Gilfeather and D. Larson[1]. These algebras have been found to be useful counterexample to a number of plausible conjectures.

Let \mathcal{A} be the algebra consisting of all bounded operators acting on \mathcal{H} of the form

with respect to the orthonormal basis $\{e_1, e_2, \dots\}$, where all non-starred entries are zero. It is easy to see that $Alg\mathcal{L}=\mathcal{A}$.

Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded operators acting on \mathcal{H} .

30

Lemma 1. Let $A = (a_{ij})$ be an operator in the tridiagonal algebra $Alg\mathcal{L}$. Then the following are equivalent:

- (1) A is self-adjoint.
- (2) A is diagonal and a_{ii} is real for all $i \in \mathbb{N}$.

Proof. Suppose that A is self-adjoint. Since $A = A^*$, $a_{ij} = 0$ for all $i \neq j$ and a_{ii} is real. So A is a real diagonal matrix.

Conversely, it is clear.

Theorem 2. Let Alg \mathcal{L} be the tridiagonal algebra and let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators in \mathcal{H} . Then the following are equivalent:

(1) There exists a self-adjoint operator $A = (a_{ij})$ in Alg \mathcal{L} such that AX = Y.

(2) There is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_{ij} = \alpha_i x_{ij}$ for all $i, j \in \mathbb{N}$.

Proof. Suppose that A is a self-adjoint operator $A = (a_{ij})$ in Alg \mathcal{L} such that AX = Y. By Lemma 1, A is diagonal and a_{ii} is real for all $i \in \mathbb{N}$. Let $\alpha_i = a_{ii}$ for $i = 1, 2, \cdots$. Since AX = Y, $y_{ij} = a_{ii}x_{ij} = \alpha_i x_{ij}$ for $i, j = 1, 2, \cdots$.

Conversely, assume that there is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_{ij} = \alpha_i x_{ij}$ for $i, j = 1, 2, \cdots$. Let A be a diagonal matrix with the diagonal sequence $\{\alpha_n\}$. Since $\{\alpha_n\}$ is bounded, A is a bounded operator. Also A is self-adjoint and AX = Y.

Theorem 3. Let Alg \mathcal{L} be the tridiagonal algebra and let $X_i = (x_{jk}^{(i)})$ and $Y_i = (y_{jk}^{(i)})$ be operators acting on \mathcal{H} for $i = 1, 2, \dots, n$. Then the following are equivalent:

(1) There exists a self-adjoint operator $A = (a_{ij})$ in Alg \mathcal{L} such that $AX_i = Y_i$ for $i = 1, 2, \cdots, n$.

(2) There is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_{jk}^{(i)} = \alpha_j x_{jk}^{(i)}$ for all $i = 1, 2, \dots, n$ and $j, k \in \mathbb{N}$.

Proof. Suppose that there exists a self-adjoint operator $A = (a_{ij})$ in Alg \mathcal{L} such that $AX_i = Y_i$ for $i = 1, 2, \dots, n$. Then A is diagonal and a_{ii} is real for each $i \in \mathbb{N}$ by Lemma 1. Let $\alpha_i = a_{ii}$ for $i = 1, 2, \dots$. Then $\{\alpha_n\}$ is bounded. Since $AX_i = Y_i, y_{jk}^{(i)} = a_{jj}x_{jk}^{(i)} = \alpha_j x_{jk}^{(i)}$ for $i = 1, 2, \dots, n$ and $j, k = 1, 2, \dots$.

Conversely, assume that there is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_{jk}^{(i)} = \alpha_j x_{jk}^{(i)}$ for $i = 1, 2, \dots, n$ and $j, k = 1, 2, \dots$.

Let A be a diagonal matrix with the diagonal sequence $\{\alpha_n\}$. Since $\{\alpha_n\}$ is bounded, A is a bounded operator. Also A is self-adjoint and $AX_i = Y_i$ for $i = 1, 2, \dots, n$.

By the similar way with the above, we have the following.

Theorem 4. Let Alg \mathcal{L} be the tridiagonal algebra and let $X_i = (x_{jk}^{(i)})$ and $Y_i = (y_{jk}^{(i)})$ be operators acting on in \mathcal{H} for $i = 1, 2, \cdots$. Then the following are equivalent:

(1) There exists a self-adjoint operator $A = (a_{ij})$ in $Alg\mathcal{L}$ such that $AX_i = Y_i$ for $i = 1, 2, \cdots$.

(2) There is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_{jk}^{(i)} = \alpha_j x_{jk}^{(i)}$ for all $i, j, k \in \mathbb{N}$.

References

- Gilfeather, F. and Larson, D., Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105-120.
- [2] Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. **29** (1980), 121-126.
- [3] Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. 33(4) (1989), 657-672.
- [4] Kadison, R., Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276.
- [5] Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc., 19(3) (1969), 45-68.
- [6] Munch, N., Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407-418.

Joo Ho Kang Dept. of Math., Daegu University, Daegu, Korea. E-mail : jhkang@daegu.ac.kr

SangKi Lee Dept. of Math. Education, Daegu University, Daegu, Korea. E-mail : sangklee@daegu.ac.kr