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UNITARY INTERPOLATION FOR
OPERATORS IN TRIDIAGONAL ALGEBRAS

Joo Ho KANG AND YOUNG Soo Jo

ABSTRACT. Given operators X and Y acting on a Hilbert space
‘H, an interpolating operator is a bounded operator A such that
AX =Y. An interpolating operator for the n-operators satisfies
the equation AX; = Y;, fori = 1,2,--- ,n. In this article, we
obtained the following : Let X = (z;;) and Y = (y;;) be operators
acting on H such that z;;(;) # 0 for all i. Then the following
statements are equivalent.

(1) There exists a unitary operator A in AlgL such that AX =Y
and every E in L reduces A.
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=1foralli=1,2,---.

1. Introduction

Let C be a collection of operators acting on a Hilbert space H and
let £ and y be vectors on H. An interpolation question for C asks for
which z and y is there a bounded operator 7" € C such that Tz = y.
A wvariation, the ‘n-vector interpolation problem’, asks for an operator
T such that Tz; = y; for fixed finite collections {z1,z2, - ,z,} and
{y1,Y2, - ,yn}. The n-vector interpolation problem was considered for
a C*-algebra U by Kadison [3]|. In the case that I/ is a nest algebra, the
(one-vector) interpolation problem was solved by Lance [4]: His result
was extended by Hopenwasser [2] to the case that U is a CSL-algebra.
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When an operator maps one thing to another, we think of the operator
as the interpolating operator and the equation representing the mapping
as the interpolation equation. The equations Az = y and AX =Y are
indistinguishable if spoken aloud, but we mean the change to capital
letters to indicate that we intend to look at fixed operators X and Y,
and ask under what conditions there will exist an operator A satisfying
the equation AX =Y.

In this article, we investigate unitary interpolation problems in tridi-
agonal algebra : Given operators X and Y acting on a Hilbert space,
when does there exist a unitary operator A in tridiagonal algebra such
that AX =Y?

First, we establish some notations and conventions. A commutative
subspace lattice £, or CSL L is a strongly closed lattice of pairwise-
commuting projections acting on a Hilbert space H. We assume that
the projections 0 and I lie in £. We usually identify projections and
their ranges, so that it makes sense to speak of an operator as leaving
a projection invariant. If £ is CSL, AlgL is called a CSL-algebra. The
symbol Algl is the algebra of all bounded linear operators on H that
leave invariant all the projections in £. Let z and y be two vectors
in some Hilbert space. Then < z,y > means the inner product of the
vectors  and y. Let N be the set of all natural numbers and let C be
the set of all complex numbers.

2. Unitary interpolation for operators in tridiagonal algebra

Let 'H be a separable complex Hilbert space with a fixed orthonormal
basis {e1,ez,---}. Let 21, Z2, -+, z, be vectors in H. Then [z1, z2,
.-+, ] means the closed subspace generated by the vectors z1, o, -+,
z,. Let £ be a subspace lattice of orthogonal projections generated
by the subspaces [eax—1], [€2k—1, €2k, €20+1] (K = 1,2,---). Then the
algebra AlgC is called a tridiagonal algebra which was introduced by F.
Gilfeather and D. Larson [1]. These algebras have been found to be useful
counterexample to a number of plausible conjectures. Recently, such
algebras have been found to be use in physics, in electrical engineering
and in general system theory.

Let A be the algebra consisting of all bounded operators acting on H
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of the form

with respect to the orthonormal basis {e1, ez, - - - }, where all non-starred
entries are zero. It is easy to see that AlglL=A4. Let D={A : Ais
diagonal acting on H }. Then D is a masa(maximal abelian subalgebra)
of Algl and D=(AlgL)N (AlgLl)*, where (Algl)* = {A* : A €Algl}.
In this paper, we use the convention 8=O, when necessary.
Let B(H) be the set of all bounded operators acting on H and let U be
an operator in B(H). U is called a unitary operator if U*U = UU™ = I.
Then the following is well-known.

THEOREM 1. Let A be a diagonal operator in B(H) with diagonal
{an}. A is a unitary operator if and only if |a,| =1 foralln =1,2,---.

From now, let ¢ : N — N be a mapping in this paper.

THEOREM 2. Let X = (z;;) and Y = (y,;;) be operators acting on
H such that z;5(;y # 0 for all i. Then the following statements are
equivalent.

(1) There exists a unitary operator A in AlgC such that AX =Y and
every E in L reduces A.
I 3oy EY fil
@ sup { I ZAL
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Wio@)|Tio@| ™" =1 foralli=1,2,---.
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PROOF. (1) = (2). Since E reduces A and AX =Y, AEX =
EY for every E in L. So A, E:Xf;) = >y E;Yf; and hence
IS0 BY £l < AN S0y BXAlL n €N, B € £ and f; € H. 1

n 122 EY fill
B XS 0, then =2=———"0" < ||A||. Hence
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Since every E in L reduces A, A is a diagonal operator. Let A = (ay).
Since AX =Y, y;; = aux;; for all ¢ and all j. Since A is a unitary
operator, |yw(i)||a:w(i)|_1 =1lforalli=1,2,---.

Conversely, if

| 2 BY fill . .
sup{ T E?:lEini” neNE; € Land f; € H} < 00,

then, without loss of generality, we may assume that

| 2251 BY i)
sup 1= meNE, e Land fye Hy = 1.
{ 122 B X fill }

Then ” Z?:I Eszz“ < ” Z?:l Ezsz”, n & N, E, € L and fi S

H ---(*). Let

M= {ZEzsz :n €NE; € L and f; EH}
i=1
Then M is a linear manifold. Define A: M — Hby AQ" | E;Xf;) =

>or  E;Yf;. Then A is well-defined by (). Extend A to M by conti-
nuity. Define A7+ = 0. Then ||4|| <1 and AX =Y.

i=1

=1

=§3E&Yﬂ

=1

and

EA(E EXf;)= E(Z EY f;)

=§5E&Yﬁ.

i=1

And EA(g) = E(0) = 0 and AE(g) =0 for g in M since (Eg, 30,
E; Xfi)=1{9, >r ,EE;Xf;)=0. Hence every E in L reduces A. So
A is a diagonal operator. Let A = (a;). Since AX =Y, y;; = a;%;;
for all 7 and all j. Since [Yio(y)||Tioy| P =1foralli=1,2,---, Aisa
unitary operator. O
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THEOREM 3. Let X, = (z; (e )) and Y, = (yff )) be operators in B(H)

(p=1,2,--- ,n) such that a:(q)

i (i) # 0 for some q. Then the following
statements are equivalent.

(1) There exists a unitary operator A in AIgL such that AX, =Y,
(p=1,2,--- ,n) and every E in L reduces A.

(2) su p{l|||§ g’ 1§k Z;;?k 1I|I| m; €EN,1<n, By, ;€L and fi ; G’H}
i=1 Tk, k.,

< oo and [y ||z9 | =1foralli=1,2,---

1o (i) 1o (1)

ProOOF. (1) = (2). If AX, =Y,, then FAX, = AEX, = EY,, for
every Ein L (p = 1,2, ,n). So AEX,f = EY,f for every E in L
and every finH (p=1,2,---,n). Thus A} ;2 ZZ 1 EBriXifi:) =
Z Zl_ E;HYf;“,mZENl<n Ekzéf,andkaEH So

my m; 1
1D BraYifuall = 1AQ D BrsXifus)l

k=1 i=1 k=1i=1

m; 1
<NAND D BriXifall-

k=1 i=1
If | 3opsy 22:1 Ey i X fuill # 0, then

Iy Sy BriXafuill ~

Hence

sup{ [P Ez 1 BriYifeal l<n,m; €N, Ey, €L and fp, € H}
“z EZ 1Ek:'Lka1“
< || Afl.

Since every E in L reduces A, A is diagonal. Let A = (as). Since

AX, =Y,, (p ) = am:v(f ) for all p, all i and all j. Since A is a unitary

operator, y(q) 29D =1 =1foralli=1, 2,
io () Vio (i)

2) = (1). If
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{nz S B Yifudl
Iy Soey B X fe

then, without loss of generality, we may assume that

" p{nz 1 B BeiYifell
Iy Yty B X fiill

msq l m; l
=1. So ” Zk=1 Zi:l Ek,iYifk,i“ < ” Zkzl Zi:l EkzXkaz” """ (*)

(I<n, mE€ N,Ekﬂ;Eﬁ and fk’iEH} < 00,

:1<n,m; e NEy; € Land fr; € H}

m;

Let M = {ZZEk,iXifk,i 1<n,m; €N,Ey; € L and f; € H}.
k=1 i=1

Then M is a linear manifold. Define A : M — H by

my; 1 l
A(Z Z EriXifri) = Z Z EriYifr
kel im1 k1 i1

Then A is well-defined by (x). Clearly AX, = Y,. Extend A to M by
contlnulty Define A|57. = 0. Then

EZE;“X fri) = EZEE;“X fui)
k=1i=1 k=1i=1
m; 1
= ZZEEk’LYkaZ
k=1i=1
and
m; m;
EAQ Y EviXifus) =EQ Z Ey,:Yifr)
k=1i=1 el iml
m; 1
=3 EE; Yifus
k=1i=1

And for every g in HL, EA(g)

m;
(Eg’ Z Z Ek,iXifk %

k=1 i=1

= E(0) =0 and AE(g) = 0 since

g,ZZEEkZXfm =

k=1 1i=1
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Hence every E in £ reduces A. So A is diagonal. Let A = (a;;). Since
AX, =Y, yg)) = aiixg.’) for all ¢, all j and all p = 1,2,--- ,n. Since

|y§g)(i)||xz(.g)(i)[‘1 =1foralli=1,2,---, A is a unitary operator. O

With the similar proof as Theorem 3, we can get the following theo-
rem.

THEOREM 4. Let X, = (wg’)) and Y, = (yg’)) be operators in B(H)
(p=1,2,---) such that xl(.g)(i) # 0 for some fixed q and for all i. Then
the following statements are equivalent.

(1) There exists a unitary operator A in AlgL such that AX, =Y,

(p=1,2,---) and every E in L reduces A.
m; l
C1 2= Bk iYifr i
(2) sup{ I Erlfl Zl“l kaYifkil :m,l eN,E ; € L and fi; € 'H}
| Ek;1 Ei:l Ek,iXifk,i”
< o0 and |y(q)i)||m(q) )|"1 =1foralli=1,2,---.

io( io(i
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