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PROJECTIONS OF ALGEBRAIC VARIETIES WITH

ALMOST LINEAR PRESENTATION II

Jeaman Ahn∗

Abstract. Let X be a nondegenerate reduced closed subscheme
in Pn. Assume that πq : X → Y = πq(X) ⊂ Pn−1 is a generic
projection from the center q ∈ Sec(X)\X where Sec(X) = Pn. Let
Z be the singular locus of the projection πq(X) ⊂ Pn−1. Suppose
that IX has the almost minimal presentation, which is of the form

R(−3)β2,1 ⊕R(−4)→ R(−2)β1,1 → IX → 0.

In this paper, we prove the followings:

(a) Z is either a linear space or a quadric hypersurface in a linear
subspace;

(b) H1(IX(k)) = H1(IY (k)) for all k ∈ Z;
(c) reg(Y ) ≤ max{reg(X), 4};
(d) Y is cut out by at most quartic hypersurfaces.

1. Introduction

Let V be a vector space of dimension n+1 over an algebraically closed
field K with a basis x0, . . . , xn. If X ⊂ Pn = P(V ) is a nondegenerate
reduced subscheme then we write IX for the ideal sheaf and IX for
the defining saturated ideal of X in the homogeneous coordinate ring
R = Sym(V ) = K[x0, . . . , xn]. Suppose that the minimal free resolution
of R/IX is of the following form

(1.1) · · · → R(−3)β
R
2,1 → R(−2)β

R
1,1 → R→ R/IX → 0.

The authors in [2] have proved that if πq : X → Y ⊂ Pn−1 is a non-
isomorphic generic projection with the center q ∈ Pn then
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• the singular locus Z = {y ∈ Y | the length of π−1
q (y) ≥ 2} is a

linear space;
• H1(IX(k)) = H1(IY (k)) for all k ∈ Z;
• reg(Y ) ≤ max{reg(X), 3};
• Y is cut out by at most cubic hypersurfaces.

In this paper, we slightly generalize these results to the case that IX
has an almost linear presentation, i.e., the minimal free resolution of
R/IX is of the following form:

· · · → R(−3)β
R
2,1 ⊕R(−4)→ R(−2)β

R
1,1 → R→ R/IX → 0.

In [1, Theorem 3.1], it was shown that if a generic projection πq is an
isomorphism then H1(IX(k)) = H1(IY (k)) for all k ≥ 3. This implies
that Y is k-normal if and only if X is k-normal for k ≥ 3.

In this paper, we will show that if a generic projection πq is non-
isomorphic then H1(IX(k)) = H1(IY (k)) for all k ∈ Z. This implies
that Y is k-normal if and only if X is k-normal for all k ∈ Z. Moreover,
we will also prove that Y is cut out by at most quartic hypersurfaces.
For the singular locus Z = {y ∈ Y | the length of π−1

q (y) ≥ 2}, it turns
out that Z is either a linear space or a quadratic hypersurface in a linear
subspace.

We use the partial elimination ideals introduced by M. Green ([8,
Definition 6.1]) and the elimination mapping cone theorem ([2, Theo-
rem 3.2]) to prove our results. In particular, the regularity of the first
partial elimination ideal K1(IX) will play a critical role in the proof of
our result.

2. Partial elimination ideals

Let X be a nondegenerate reduced closed subscheme in Pn and let
πq : X → Y = πq(X) ⊂ Pn−1 be a generic projection from the center
q ∈ Sec(X)\X where Sec(X) = Pn. Considering a change of coordinates,
we may assume that q = [1, 0, . . . , 0]. Then the i-th partial elimination
ideal Ki(IX) can be defined as follows:

Definition 2.1 (Partial elimination ideal). With the same notations
as above, the i-th partial elimination ideal Ki(IX) is defined by

Ki(IX) =

{
∂if

∂xi0
| f ∈ IX and

∂i+1f

∂xi+1
0

= 0

}
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Algebraically, this can be rewritten as follows: if f ∈ IX has a leading
term in(f) = xd00 · · ·xdnn in the lexicographic order, we set dx0(f) = d0,
the leading power of x0 in f . Let

K̃i(IX) =
⊕
m≥0

{
f ∈ (IX)m | dx0(f) ≤ i

}
.

If f ∈ K̃i(IX), we may write uniquely f = xi0f̄ + g where dx0(g) < i.

Then clearly Ki(IX) is the image of K̃i(IX) in S = K[x1, . . . , xn] under
the map f 7→ f̄ . Note that there is the following short exact sequence:

(2.1) 0→ K̃i−1(IX)

IY
→ K̃i(IX)

IY
→ Ki(IX)(−i)→ 0.

It is known that set-theoretically Ki(IX) defines the following multi-
ple loci [8, Proposition 6.2]

Zi :=
{
p ∈ πq(X) | multp(πq(X)) ≥ i+ 1

}
.

Moreover, there is a filtration on partial elimination ideals of I:

K0(IX) ⊂ K1(IX) ⊂ K2(IX) ⊂ · · · ⊂ Ki(IX) ⊂ · · · ⊂ S = K[x1, x2, . . . , xn].

Let us recall some definitions and basic properties of partial elimi-
nation ideals (See [4, Section 2]). If X is cut out by a homogeneous
polynomial of degree d then, in generic coordinates, there exists a ho-
mogeneous polynomial f ∈ IX such that f is of the form

f = xd0 + xd−1
0 gd−1 + · · ·+ x0g1 + g0

where gi is a homogeneous form of degree (d− i) in S = K[x1, . . . , xn].
Then we have the following exact sequence

(2.2) 0→ K̃d−1(IX)→ ⊕d−1
i=0S(−i) φ0→ R/IX → 0,

where the map φ0 is defined by φ0(ei) = [xi0] for each free basis ei of
S(−i), where [xi0] is the quotient image of the monomial xi0 in R/IX (see
[2], [5]). For the projection map πq : X → Y = πq(X) ⊂ Pn−1, we also
have a natural map:

αd : 0→ (S/IY )d → (R/IX)d.

Now we have the following commutative diagram.

Lemma 2.2. Let X ⊂ Pn = P(V ) be a nondegenerate reduced sub-
scheme and let IX be the defining saturated ideal of X. Then we have



184 Jeaman Ahn

the following commutative diagram of S-modules for each d > 0:

(2.3)

0 0 0

↓ ↓ ↓
0 → IY → S → S/IY → 0

↓ ↓ ↓ α

0 → K̃d−1(IX) → ⊕d−1
i=0S(−i) ϕ0→ R/IX → 0

↓ ↓ ↓

0 → K̃d−1(IX)/IY → ⊕d−1
i=1S(−i) → coker α → 0

↓ ↓ ↓
0 0 0

Proof. See the proof of Lemma 2.1 in [4].

Finally, we remark the elimination mapping cone theorem in [2, Theo-
rem 3.2]. Since we consider an outer projection πq : X → Y ⊂ Pn−1, a
graded S-module R/IX is finitely generated. So we have the following

long exact sequence by the map ϕ : R/IX(−1)
×x0→ R/IX on the graded

Koszul complex of R/IX over S.

Theorem 2.3 (Theorem 3.2 in [2]). With the same notation as above,
we have the following long exact sequence:

−→ TorSi (R/IX , k)i+j −→ TorRi (R/IX , k)i+j −→ TorSi−1(R/IX , k)i+j−1

δ−→ TorSi−1(R/IX , k)i+j −→ TorRi−1(R/IX , k)i+j −→ · · ·

whose connecting homomorphism δ is the multiplicative map ×x0.

3. Main result

Theorem 3.1. Let X be a nondegenerate reduced closed subscheme
in Pn. Assume that πq : X → Y = πq(X) ⊂ Pn−1 be a generic projection
from the center q ∈ Sec(X) \X where Sec(X) = Pn. Suppose that IX
has the almost minimal presentation, which is of the form

R(−3)β2,1 ⊕R(−4)→ R(−2)β1,1 → IX → 0.

Let Z = {y ∈ Y | the length of π−1
q (y) ≥ 2} be the singular locus of the

projection πq(X) ⊂ Pn−1. Then, we have



Projections of algebraic varieties 185

(a) Z is either a linear space or a closed subscheme of degree two in a
linear subspace;

(b) H1(IX(k)) = H1(IY (k)) for all k ∈ Z;
(c) reg(Y ) ≤ max{reg(X), 4};
(d) Y is cut out by at most quartic hypersurfaces.

Proof. We may assume that IX has the almost minimal presentation,
which is of the form

R(−3)β
R
2,1 ⊕R(−4)→ R(−2)β

R
1,1 → R→ R/IX → 0.

Then, it follows from Theorem 2.3 that

(3.1) βS1,2 ≤ βR2,2 = 1,

and the minimal free resolution of R/IX as a graded S-module is of the
form

(3.2) · · · → S(−2)β
S
1,1 ⊕ S(−3)β

S
1,2 → S ⊕ S(−1)

ϕ0→ R/IX → 0.

Now applying Lemma 2.2 for d = 2, we have the following diagram:
(3.3)

0 0 0

↓ ↓ ↓
0 → IY → S → S/IY → 0

↓ ↓ ↓ α
0 → K̃1(IX) → S ⊕ S(−1) → R/IX → 0

↓ ↓ ↓

0 → K1(IX)(−1)
ϕ→ S(−1) → S/K1(IX)(−1) → 0

↓ ↓ ↓
0 0 0

By the diagram chasing in (3.3) with (3.2), we obtain the following
surjection map

· · · → S(−2)⊕β
S
1,1 ⊕ S(−3)⊕β

S
1,2 → K1(IX)(−1)→ 0.

Then it follows from (3.1) that K1(IX) is generated either by linear
forms if βS1,2 = 0; or by at most one quadric if βS1,2 = 1. Since K1(IX) is

a radical ideal, the ideal K1(IX) can be regarded as the singular locus
Z of πq (See [8, Proposition 6.2]). This proves (a).
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Consider the following exact sequence

(3.4) 0→ OY → πq∗(OX)→ OZ(−1)→ 0.

Then, by taking global sections from the above sequence (3.4), we have
the following commutative diagram of S-modules with exact rows and
columns:
(3.5)

0

↓
0 0 ker(α)

↓ ↓ ↓
0 → S/IY → H0

∗ (OY ) → H1
∗ (IY ) → 0

↓ α ↓ γ ↓ β
0 → R/IX → H0

∗ (OX) → H1
∗ (IX) → 0

↓ ↓ ↓
[S/K1(IX)](−1) → H0

∗ (OZ(−1)) → H1
∗ (IZ(−1)) → 0

↓
0

Consider the following exact sequence of graded S-modules

0→ H0
m(S/K1(IX))(−1) → [S/K1(IX)](−1)→

H0
∗ (OZ)(−1)→ H1

m(S/K1(IX))(−1)→ 0,

where H i
m(−) denotes the i-th local cohomology with respect to the

irrelevant ideal m = (x1, . . . , xn) ([7, Corollary A1.12]). Since K1(IX)
is a saturated ideal, we see that IZ = K1(IX). Hence we have

ker(α) ∼= H0
m(S/K1(IX)(−1)) and H1

∗ (IZ(−1)) ∼= H1
m(S/K1(IX)(−1)).

Then it follows from snake lemma that

0→ ker(α)→ S/K1(IX)(−1)→ H0
∗ (OZ(−1))→ H1

∗ (IZ(−1))→ 0.

Remark that the singular locus of πq is defined by K1(IX), which is
generated by linear forms and at most one quadric polynomial. Hence
Z is a complete intersection of degree ≤ 2. Now we give a proof dividing
the cases in terms of dimension of Z.
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Case 1: dim(Z) = 0.
Since 1 ≤ deg(Z) ≤ 2 we see that Z is a zero-dimensional closed sub-
scheme, which is 1-regular. Hence we have

H1(IZ(k)) = 0 for each k ≥ 0.

From (3.5), we see H1(IY (k)) ∼= H1(IX(k)) for all k ∈ Z. Hence Y
is m-normal if X is m-normal for each m ≥ 0.

Case 2: dim(Z) ≥ 1.
In this case, note that Z is an arithmetically Cohen-Macaulay subscheme
of dimension ≥ 1. This implies that

H1
∗ (IZ) = 0 and S/K1(IX) ∼= H0

∗ (OZ).

This implies that H1
∗ (IY ) ' H1

∗ (IX). Hence X is m-normal if and only
if Y is m-normal, for each m ≥ 0. This proves (b).

Consider the left most column of exact sequence of S-modules in
(3.5):

(3.6) 0→ S/IY → R/IX → S/K1(IX)(−1)→ 0.

Let d = deg(Z) ≤ 2. Note that S/K1(IX) is the coordinate ring of
Z, which is a complete intersection scheme. Applying this to the short
exact sequence (3.6), we can conclude that

reg(S/IY ) ≤ max{reg(R/IX), d+ 1} ≤ max{reg(R/IX), 3}.
Hence, reg(IY ) ≤ max{reg(IX), 4} and thus Y is cut out by at most
quartic hypersurfaces. This proves (c) and (d).

Let Σd(X) := {x ∈ X | πq−1(πq(x)) has length d } be the d-secant
locus of the projection πq. It is known that if IX has a minimal free
presentation as in (1.1) then Z is a linear space Λ, and Σ2(X) is a
hypersurface F of degree 2 in the linear span

〈
Λ, q

〉
. This was very

useful to classify non-normal del Pezzo varieties in [6] by Brodmann and
Park.

Corollary 3.2 (Locus of 2-secant lines). Let X be a nondegenerate
reduced closed subscheme in Pn. Assume that πq : X → Y = πq(X) ⊂
Pn−1 be a generic projection from the center q ∈ Sec(X) \ X where
Sec(X) = Pn. Suppose that IX has the almost minimal presentation,
which is of the form

R(−3)β2,1 ⊕R(−4)→ R(−2)β1,1 → IX → 0.

Then we have
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(a) if Z = πq(Σ2(X)) is a linear subspace then Σ2(X) is a quadric
hypersurface F in the linear span

〈
Z, q

〉
;

(b) if Z = πq(Σ2(X)) is a quadric hypersurface in linear subspace Λ
then Σ2(X) is a hypersurface F of degree 4 in the linear span〈
Λ, q

〉
.

Proof. Note that Z is either a linear space or a quadric hypersurface
in a linear subspace. We denote such a linear space by Λ. Since

πq : Σ2(X) � Z ⊂ πq(X)

is a 2 : 1 morphism, Σ2(X) is a hypersurface of degree 2 deg(Z) in the
linear span

〈
Λ, q

〉
.
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