PROJECTIONS OF ALGEBRAIC VARIETIES WITH ALMOST LINEAR PRESENTATION II

Jeaman Ahn*

Abstract

Let X be a nondegenerate reduced closed subscheme in \mathbb{P}^{n}. Assume that $\pi_{q}: X \rightarrow Y=\pi_{q}(X) \subset \mathbb{P}^{n-1}$ is a generic projection from the center $q \in \operatorname{Sec}(X) \backslash X$ where $\operatorname{Sec}(X)=\mathbb{P}^{n}$. Let Z be the singular locus of the projection $\pi_{q}(X) \subset \mathbb{P}^{n-1}$. Suppose that I_{X} has the almost minimal presentation, which is of the form $$
R(-3)^{\beta_{2,1}} \oplus R(-4) \rightarrow R(-2)^{\beta_{1,1}} \rightarrow I_{X} \rightarrow 0
$$

In this paper, we prove the followings:
(a) Z is either a linear space or a quadric hypersurface in a linear subspace;
(b) $H^{1}\left(\mathcal{I}_{X}(k)\right)=H^{1}\left(\mathcal{I}_{Y}(k)\right)$ for all $k \in \mathbb{Z}$;
(c) $\operatorname{reg}(Y) \leq \max \{\operatorname{reg}(X), 4\}$;
(d) Y is cut out by at most quartic hypersurfaces.

1. Introduction

Let V be a vector space of dimension $n+1$ over an algebraically closed field K with a basis x_{0}, \ldots, x_{n}. If $X \subset \mathbb{P}^{n}=\mathbb{P}(V)$ is a nondegenerate reduced subscheme then we write \mathcal{I}_{X} for the ideal sheaf and I_{X} for the defining saturated ideal of X in the homogeneous coordinate ring $R=\operatorname{Sym}(V)=K\left[x_{0}, \ldots, x_{n}\right]$. Suppose that the minimal free resolution of R / I_{X} is of the following form

$$
\begin{equation*}
\cdots \rightarrow R(-3)^{\beta_{2,1}^{R}} \rightarrow R(-2)^{\beta_{1,1}^{R}} \rightarrow R \rightarrow R / I_{X} \rightarrow 0 . \tag{1.1}
\end{equation*}
$$

The authors in [2] have proved that if $\pi_{q}: X \rightarrow Y \subset \mathbb{P}^{n-1}$ is a nonisomorphic generic projection with the center $q \in \mathbb{P}^{n}$ then

[^0]- the singular locus $Z=\left\{y \in Y \mid\right.$ the length of $\left.\pi_{q}^{-1}(y) \geq 2\right\}$ is a linear space;
- $H^{1}\left(\mathcal{I}_{X}(k)\right)=H^{1}\left(\mathcal{I}_{Y}(k)\right)$ for all $k \in \mathbb{Z}$;
- $\operatorname{reg}(Y) \leq \max \{\operatorname{reg}(X), 3\}$;
- Y is cut out by at most cubic hypersurfaces.

In this paper, we slightly generalize these results to the case that I_{X} has an almost linear presentation, i.e., the minimal free resolution of R / I_{X} is of the following form:

$$
\cdots \rightarrow R(-3)^{\beta_{2,1}^{R}} \oplus R(-4) \rightarrow R(-2)^{\beta_{1,1}^{R}} \rightarrow R \rightarrow R / I_{X} \rightarrow 0
$$

In [1, Theorem 3.1], it was shown that if a generic projection π_{q} is an isomorphism then $H^{1}\left(\mathcal{I}_{X}(k)\right)=H^{1}\left(\mathcal{I}_{Y}(k)\right)$ for all $k \geq 3$. This implies that Y is k-normal if and only if X is k-normal for $k \geq 3$.

In this paper, we will show that if a generic projection π_{q} is nonisomorphic then $H^{1}\left(\mathcal{I}_{X}(k)\right)=H^{1}\left(\mathcal{I}_{Y}(k)\right)$ for all $k \in \mathbb{Z}$. This implies that Y is k-normal if and only if X is k-normal for all $k \in \mathbb{Z}$. Moreover, we will also prove that Y is cut out by at most quartic hypersurfaces. For the singular locus $Z=\left\{y \in Y \mid\right.$ the length of $\left.\pi_{q}^{-1}(y) \geq 2\right\}$, it turns out that Z is either a linear space or a quadratic hypersurface in a linear subspace.

We use the partial elimination ideals introduced by M. Green ([8, Definition 6.1]) and the elimination mapping cone theorem ([2, Theorem 3.2]) to prove our results. In particular, the regularity of the first partial elimination ideal $K_{1}\left(I_{X}\right)$ will play a critical role in the proof of our result.

2. Partial elimination ideals

Let X be a nondegenerate reduced closed subscheme in \mathbb{P}^{n} and let $\pi_{q}: X \rightarrow Y=\pi_{q}(X) \subset \mathbb{P}^{n-1}$ be a generic projection from the center $q \in \operatorname{Sec}(X) \backslash X$ where $\operatorname{Sec}(X)=\mathbb{P}^{n}$. Considering a change of coordinates, we may assume that $q=[1,0, \ldots, 0]$. Then the i-th partial elimination ideal $K_{i}\left(I_{X}\right)$ can be defined as follows:

Definition 2.1 (Partial elimination ideal). With the same notations as above, the i-th partial elimination ideal $K_{i}\left(I_{X}\right)$ is defined by

$$
K_{i}\left(I_{X}\right)=\left\{\left.\frac{\partial^{i} f}{\partial x_{0}^{i}} \right\rvert\, f \in I_{X} \text { and } \frac{\partial^{i+1} f}{\partial x_{0}^{i+1}}=0\right\}
$$

Algebraically, this can be rewritten as follows: if $f \in I_{X}$ has a leading term $\operatorname{in}(f)=x_{0}^{d_{0}} \cdots x_{n}^{d_{n}}$ in the lexicographic order, we set $d_{x_{0}}(f)=d_{0}$, the leading power of x_{0} in f. Let

$$
\tilde{K}_{i}\left(I_{X}\right)=\bigoplus_{m \geq 0}\left\{f \in\left(I_{X}\right)_{m} \mid d_{x_{0}}(f) \leq i\right\}
$$

If $f \in \tilde{K}_{i}\left(I_{X}\right)$, we may write uniquely $f=x_{0}^{i} \bar{f}+g$ where $d_{x_{0}}(g)<i$. Then clearly $K_{\underline{i}}\left(I_{X}\right)$ is the image of $\tilde{K}_{i}\left(I_{X}\right)$ in $S=K\left[x_{1}, \ldots, x_{n}\right]$ under the map $f \mapsto \bar{f}$. Note that there is the following short exact sequence:

$$
\begin{equation*}
0 \rightarrow \frac{\tilde{K}_{i-1}\left(I_{X}\right)}{I_{Y}} \rightarrow \frac{\tilde{K}_{i}\left(I_{X}\right)}{I_{Y}} \rightarrow K_{i}\left(I_{X}\right)(-i) \rightarrow 0 \tag{2.1}
\end{equation*}
$$

It is known that set-theoretically $K_{i}\left(I_{X}\right)$ defines the following multiple loci [8, Proposition 6.2]

$$
Z_{i}:=\left\{p \in \pi_{q}(X) \mid \operatorname{mult}_{p}\left(\pi_{q}(X)\right) \geq i+1\right\}
$$

Moreover, there is a filtration on partial elimination ideals of I :
$K_{0}\left(I_{X}\right) \subset K_{1}\left(I_{X}\right) \subset K_{2}\left(I_{X}\right) \subset \cdots \subset K_{i}\left(I_{X}\right) \subset \cdots \subset S=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Let us recall some definitions and basic properties of partial elimination ideals (See [4, Section 2]). If X is cut out by a homogeneous polynomial of degree d then, in generic coordinates, there exists a homogeneous polynomial $f \in I_{X}$ such that f is of the form

$$
f=x_{0}^{d}+x_{0}^{d-1} g_{d-1}+\cdots+x_{0} g_{1}+g_{0}
$$

where g_{i} is a homogeneous form of degree $(d-i)$ in $S=K\left[x_{1}, \ldots, x_{n}\right]$. Then we have the following exact sequence

$$
\begin{equation*}
0 \rightarrow \tilde{K}_{d-1}\left(I_{X}\right) \rightarrow \oplus_{i=0}^{d-1} S(-i) \xrightarrow{\phi_{0}} R / I_{X} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

where the map ϕ_{0} is defined by $\phi_{0}\left(e_{i}\right)=\left[x_{0}^{i}\right]$ for each free basis e_{i} of $S(-i)$, where $\left[x_{0}^{i}\right]$ is the quotient image of the monomial x_{0}^{i} in R / I_{X} (see [2], [5]). For the projection map $\pi_{q}: X \rightarrow Y=\pi_{q}(X) \subset \mathbb{P}^{n-1}$, we also have a natural map:

$$
\alpha_{d}: 0 \rightarrow\left(S / I_{Y}\right)_{d} \rightarrow\left(R / I_{X}\right)_{d}
$$

Now we have the following commutative diagram.
Lemma 2.2. Let $X \subset \mathbb{P}^{n}=\mathbb{P}(V)$ be a nondegenerate reduced subscheme and let I_{X} be the defining saturated ideal of X. Then we have
the following commutative diagram of S-modules for each $d>0$:

Proof. See the proof of Lemma 2.1 in [4].
Finally, we remark the elimination mapping cone theorem in [2, Theorem 3.2]. Since we consider an outer projection $\pi_{q}: X \rightarrow Y \subset \mathbb{P}^{n-1}$, a graded S-module R / I_{X} is finitely generated. So we have the following long exact sequence by the $\operatorname{map} \varphi: R / I_{X}(-1) \xrightarrow{\times x_{0}} R / I_{X}$ on the graded Koszul complex of R / I_{X} over S.

Theorem 2.3 (Theorem 3.2 in [2]). With the same notation as above, we have the following long exact sequence:

$$
\begin{gathered}
\longrightarrow \operatorname{Tor}_{i}^{S}\left(R / I_{X}, k\right)_{i+j} \longrightarrow \operatorname{Tor}_{i}^{R}\left(R / I_{X}, k\right)_{i+j} \longrightarrow \operatorname{Tor}_{i-1}^{S}\left(R / I_{X}, k\right)_{i+j-1} \\
\stackrel{\delta}{\longrightarrow} \operatorname{Tor}_{i-1}^{S}\left(R / I_{X}, k\right)_{i+j} \longrightarrow \operatorname{Tor}_{i-1}^{R}\left(R / I_{X}, k\right)_{i+j} \longrightarrow \cdots
\end{gathered}
$$

whose connecting homomorphism δ is the multiplicative map $\times x_{0}$.

3. Main result

Theorem 3.1. Let X be a nondegenerate reduced closed subscheme in \mathbb{P}^{n}. Assume that $\pi_{q}: X \rightarrow Y=\pi_{q}(X) \subset \mathbb{P}^{n-1}$ be a generic projection from the center $q \in \operatorname{Sec}(X) \backslash X$ where $\operatorname{Sec}(X)=\mathbb{P}^{n}$. Suppose that I_{X} has the almost minimal presentation, which is of the form

$$
R(-3)^{\beta_{2,1}} \oplus R(-4) \rightarrow R(-2)^{\beta_{1,1}} \rightarrow I_{X} \rightarrow 0
$$

Let $Z=\left\{y \in Y \mid\right.$ the length of $\left.\pi_{q}^{-1}(y) \geq 2\right\}$ be the singular locus of the projection $\pi_{q}(X) \subset \mathbb{P}^{n-1}$. Then, we have
(a) Z is either a linear space or a closed subscheme of degree two in a linear subspace;
(b) $H^{1}\left(\mathcal{I}_{X}(k)\right)=H^{1}\left(\mathcal{I}_{Y}(k)\right)$ for all $k \in \mathbb{Z}$;
(c) $\operatorname{reg}(Y) \leq \max \{\operatorname{reg}(X), 4\}$;
(d) Y is cut out by at most quartic hypersurfaces.

Proof. We may assume that I_{X} has the almost minimal presentation, which is of the form

$$
R(-3)^{\beta_{2,1}^{R}} \oplus R(-4) \rightarrow R(-2)^{\beta_{1,1}^{R}} \rightarrow R \rightarrow R / I_{X} \rightarrow 0
$$

Then, it follows from Theorem 2.3 that

$$
\begin{equation*}
\beta_{1,2}^{S} \leq \beta_{2,2}^{R}=1 \tag{3.1}
\end{equation*}
$$

and the minimal free resolution of R / I_{X} as a graded S-module is of the form

$$
\begin{equation*}
\cdots \rightarrow S(-2)^{\beta_{1,1}^{S}} \oplus S(-3)^{\beta_{1,2}^{S}} \rightarrow S \oplus S(-1) \xrightarrow{\varphi_{0}} R / I_{X} \rightarrow 0 \tag{3.2}
\end{equation*}
$$

Now applying Lemma 2.2 for $d=2$, we have the following diagram:

By the diagram chasing in (3.3) with (3.2), we obtain the following surjection map

$$
\cdots \rightarrow S(-2)^{\oplus \beta_{1,1}^{S}} \oplus S(-3)^{\oplus \beta_{1,2}^{S}} \rightarrow K_{1}\left(I_{X}\right)(-1) \rightarrow 0
$$

Then it follows from (3.1) that $K_{1}\left(I_{X}\right)$ is generated either by linear forms if $\beta_{1,2}^{S}=0$; or by at most one quadric if $\beta_{1,2}^{S}=1$. Since $K_{1}\left(I_{X}\right)$ is a radical ideal, the ideal $K_{1}\left(I_{X}\right)$ can be regarded as the singular locus Z of π_{q} (See [8, Proposition 6.2]). This proves (a).

Consider the following exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{Y} \rightarrow \pi_{q_{*}}\left(\mathcal{O}_{X}\right) \rightarrow \mathcal{O}_{Z}(-1) \rightarrow 0 \tag{3.4}
\end{equation*}
$$

Then, by taking global sections from the above sequence (3.4), we have the following commutative diagram of S-modules with exact rows and columns:

Consider the following exact sequence of graded S-modules

$$
\begin{aligned}
0 \rightarrow H_{\mathbf{m}}^{0}\left(S / K_{1}\left(I_{X}\right)\right)(-1) & \rightarrow\left[S / K_{1}\left(I_{X}\right)\right](-1) \rightarrow \\
& H_{*}^{0}\left(\mathcal{O}_{Z}\right)(-1) \rightarrow H_{\mathbf{m}}^{1}\left(S / K_{1}\left(I_{X}\right)\right)(-1) \rightarrow 0
\end{aligned}
$$

where $H_{\mathbf{m}}^{i}(-)$ denotes the i-th local cohomology with respect to the irrelevant ideal $\mathbf{m}=\left(x_{1}, \ldots, x_{n}\right)$ ([7, Corollary A1.12]). Since $K_{1}\left(I_{X}\right)$ is a saturated ideal, we see that $I_{Z}=K_{1}\left(I_{X}\right)$. Hence we have
$\operatorname{ker}(\alpha) \cong H_{\mathbf{m}}^{0}\left(S / K_{1}\left(I_{X}\right)(-1)\right)$ and $H_{*}^{1}\left(\mathcal{I}_{Z}(-1)\right) \cong H_{\mathbf{m}}^{1}\left(S / K_{1}\left(I_{X}\right)(-1)\right)$.
Then it follows from snake lemma that

$$
0 \rightarrow \operatorname{ker}(\alpha) \rightarrow S / K_{1}\left(I_{X}\right)(-1) \rightarrow H_{*}^{0}\left(\mathcal{O}_{Z}(-1)\right) \rightarrow H_{*}^{1}\left(\mathcal{I}_{Z}(-1)\right) \rightarrow 0
$$

Remark that the singular locus of π_{q} is defined by $K_{1}\left(I_{X}\right)$, which is generated by linear forms and at most one quadric polynomial. Hence Z is a complete intersection of degree ≤ 2. Now we give a proof dividing the cases in terms of dimension of Z.

Case 1: $\operatorname{dim}(Z)=0$.
Since $1 \leq \operatorname{deg}(Z) \leq 2$ we see that Z is a zero-dimensional closed subscheme, which is 1 -regular. Hence we have

$$
H^{1}\left(\mathcal{I}_{Z}(k)\right)=0 \text { for each } k \geq 0 .
$$

From (3.5), we see $H^{1}\left(\mathcal{I}_{Y}(k)\right) \cong H^{1}\left(\mathcal{I}_{X}(k)\right)$ for all $k \in \mathbb{Z}$. Hence Y is m-normal if X is m-normal for each $m \geq 0$.

Case 2: $\operatorname{dim}(Z) \geq 1$.
In this case, note that Z is an arithmetically Cohen-Macaulay subscheme of dimension ≥ 1. This implies that

$$
H_{*}^{1}\left(\mathcal{I}_{Z}\right)=0 \quad \text { and } \quad S / K_{1}\left(I_{X}\right) \cong H_{*}^{0}\left(\mathcal{O}_{Z}\right) .
$$

This implies that $H_{*}^{1}\left(\mathcal{I}_{Y}\right) \simeq H_{*}^{1}\left(\mathcal{I}_{X}\right)$. Hence X is m-normal if and only if Y is m-normal, for each $m \geq 0$. This proves (b).

Consider the left most column of exact sequence of S-modules in (3.5):

$$
\begin{equation*}
0 \rightarrow S / I_{Y} \rightarrow R / I_{X} \rightarrow S / K_{1}\left(I_{X}\right)(-1) \rightarrow 0 . \tag{3.6}
\end{equation*}
$$

Let $d=\operatorname{deg}(Z) \leq 2$. Note that $S / K_{1}\left(I_{X}\right)$ is the coordinate ring of Z, which is a complete intersection scheme. Applying this to the short exact sequence (3.6), we can conclude that

$$
\operatorname{reg}\left(S / I_{Y}\right) \leq \max \left\{\operatorname{reg}\left(R / I_{X}\right), d+1\right\} \leq \max \left\{\operatorname{reg}\left(R / I_{X}\right), 3\right\}
$$

Hence, $\operatorname{reg}\left(I_{Y}\right) \leq \max \left\{\operatorname{reg}\left(I_{X}\right), 4\right\}$ and thus Y is cut out by at most quartic hypersurfaces. This proves (c) and (d).

Let $\Sigma_{d}(X):=\left\{x \in X \mid \pi_{q}^{-1}\left(\pi_{q}(x)\right)\right.$ has length d $\}$ be the d-secant locus of the projection π_{q}. It is known that if I_{X} has a minimal free presentation as in (1.1) then Z is a linear space Λ, and $\Sigma_{2}(X)$ is a hypersurface F of degree 2 in the linear span $\langle\Lambda, q\rangle$. This was very useful to classify non-normal del Pezzo varieties in [6] by Brodmann and Park.

Corollary 3.2 (Locus of 2-secant lines). Let X be a nondegenerate reduced closed subscheme in \mathbb{P}^{n}. Assume that $\pi_{q}: X \rightarrow Y=\pi_{q}(X) \subset$ \mathbb{P}^{n-1} be a generic projection from the center $q \in \operatorname{Sec}(X) \backslash X$ where $\operatorname{Sec}(X)=\mathbb{P}^{n}$. Suppose that I_{X} has the almost minimal presentation, which is of the form

$$
R(-3)^{\beta_{2,1}} \oplus R(-4) \rightarrow R(-2)^{\beta_{1,1}} \rightarrow I_{X} \rightarrow 0 .
$$

Then we have
(a) if $Z=\pi_{q}\left(\Sigma_{2}(X)\right)$ is a linear subspace then $\Sigma_{2}(X)$ is a quadric hypersurface F in the linear $\operatorname{span}\langle Z, q\rangle$;
(b) if $Z=\pi_{q}\left(\Sigma_{2}(X)\right)$ is a quadric hypersurface in linear subspace Λ then $\Sigma_{2}(X)$ is a hypersurface F of degree 4 in the linear span $\langle\Lambda, q\rangle$.

Proof. Note that Z is either a linear space or a quadric hypersurface in a linear subspace. We denote such a linear space by Λ. Since

$$
\pi_{q}: \Sigma_{2}(X) \rightarrow Z \subset \pi_{q}(X)
$$

is a $2: 1$ morphism, $\Sigma_{2}(X)$ is a hypersurface of degree $2 \operatorname{deg}(Z)$ in the linear $\operatorname{span}\langle\Lambda, q\rangle$.

References

[1] J. Ahn Projections of Algebraic Varieties with Almost Linear Presentation I, J Chungcheong Math Soc., 32 (2019), no. 1 15-21
[2] J. Ahn and S. Kwak, Graded mapping cone theorem, multisecants and syzygies, J. Algebr., 331 (2011), 243262.
[3] J. Ahn and S. Kwak, On syzygies, degree, and geometric properties of projective schemes with property $\mathbf{N}_{3, p}$, J. Pure Appl. Algebr., 219 (2015) 27242739.
[4] J. Ahn and S. Kwak, The regularity of partial elimination ideals, Castelnuovo normality and syzygies, J. Algebr., 533 (2019) 1-16.
[5] J. Ahn, S. Kwak and Y. Song, The degree complexity of smooth surfaces of codimension 2, J. Symb. Comput., 47 (2012) 568-581.
[6] M. Brodmann and E. Park, On varieties of almost minimal degree I: Secant loci of rational normal scrolls, J. Pure Appl. Algebra 214 (2010), 20332043.
[7] D. Eisenbud, The Geometry of Syzygies, Springer-Velag New York, 229 (2005)
[8] M. Green, Generic Initial Ideals, in Six lectures on Commutative Algebra, (Elias J., Giral J.M., Miró-Roig, R.M., Zarzuela S., eds.), Progress in Mathematics 166, Birkhäuser, (1998), 119-186.
*
Department of Mathematics Education
Kongju National University
Kongju 314-701, Republic of Korea
E-mail: jeamanahn@kongju.ac.kr

[^0]: Received March 16, 2021; Accepted May 08, 2021.
 2010 Mathematics Subject Classification: Primary 14N05; Secondary 13D02.
 Key words and phrases: syzygy, normality, Castelnuovo-Mumford regularity, partial elimination ideal.

 The author was supported by the research grant of the Kongju National University for the research year in 2018-2019.

