• Title/Summary/Keyword: H-polarization

Search Result 622, Processing Time 0.035 seconds

Evaluation on Damage Behavior of Al-4.5%Mg-0.6%Mn Al Alloy with Potentiostatic Experiment Time (Al-4.5%Mg-0.6%Mn 알루미늄 합금의 정전위 시간 변수에 따른 손상거동 평가)

  • Kim, Seong-Jong;Woo, Yong-Bin;Han, Min-Su;Jang, Seok-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.569-576
    • /
    • 2012
  • In general, aluminum alloys forms the passive film($Al_2O_3$, $Al_2O_3{\cdot}3H_2O$) in neutral solution. However, the passive film created on the surface will be destroyed by chloride ions contained in sea water so the corrosion will occur. In this study, in order to solve the problem of corrosion under a seawater environment, potentiostatic protection techniques were applied to Al-4.5%Mg-0.6%Mn aluminum alloy in seawater. At polarization experiments, active state were observed at anodic polarization and concentration polarization by reduction of dissolves oxygen and activation polarization were found at anodic polarization. As a results of potentiostatic experiment, calcareous deposit were created much more as applying time increase from the turning point of the concentration polarization and activation polarization and crevice corrosion was partially observed between calcareous deposit and surface of base metal. Overall potentiostatic anodic polarization experiment was difficult to apply potentiostatic corrosion protection technology by occurrence of active state, whereas potentiostatic cathodic polarization experiment examined optimum corrosion protection condition of -1.1 V~-0.75 V within the range of concentration polarization considered various applying time.

The Study on the Corrosion Behavior of STS 304 for Gas Boiler in the Condensed Water (응축수 중에서 가스보일러용 STS 304의 부식거동에 관한 연구)

  • Du Yun Byoung;Lim Uh Joh;Jeong Ki Cheol
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.21-25
    • /
    • 2005
  • This paper was studied on the corrosion behavior of STS 304 for gas boiler in the condensed water, the electrochemical polarization test of STS 304 for gas boiler in the condensed water was carried out. And the corrosion behavior of STS 304 was considered. The main results are as following: 1) As corrosion environment is acidified from neutrality, the polarization resistance of STS 304 decreases and the corrosion potential is less noble. 2) The corrosion reaction mechanism of STS 304 is cathodic control. 3) As corrosion environment is acidified, the passive potential range of STS 304 decreases. Also, the passive current density of STS 304 increases.

  • PDF

Near-IR Polarimetry around 30 Doradus - II. Polarization Structure of the Expanded Survey Field

  • Kim, Jae-Yeong;Pak, Soo-Jong;Kang, Won-Seok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.111.1-111.1
    • /
    • 2011
  • We present near-IR imaging polarimetry of the observed $5{\times}9$ fields (${\sim}39'{\times}69'$) in the Large Magellanic Cloud (LMC), using the InfraRed Survey Facility (IRSF). We obtained polarimetry data in J, H, and Ks bands using the JHKs-simultaneous imaging polarimeter SIRPOL. We measured Stokes parameters of point-like sources to derive the degree of polarization and the polarization position angle. We show a polarization vector map in the reduced 45 fields and the statistical distribution of the polarization degrees and angles. This poster presents the preliminary results to show the physical properties of the magnetic field in the observed LMC regions.

  • PDF

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas;Karim, Muhammad Ramzan Abdul;Shehbaz, Tauheed;Taimoor, Aqeel Ahmad;Ali, Rashid;Khan, Muhammad Imran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.213-226
    • /
    • 2022
  • In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

Synthesis and Characterization of New Transition Metal Complexes of Schiff-base Derived from 2-Aminopyrimidine and 2,4-Dihydroxybenzaldehyde and Its Applications in Corrosion Inhibition (2-Aminopyrimidine 및 2,4-Dihydoxybenzaldehyde 치환체인 Schiff-염기의 전이금속 착물에 대한 합성 및 특성 그리고 부식방지에의 응용)

  • Ouf, Abd El-Fatah M.;Ali, Mayada S.;Soliman, Mamdouh S.;El-Defrawy, Ahmed M.;Mostafa, Sahar I.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.402-410
    • /
    • 2010
  • New complexes cis-[$Mo_2O_5(Hapdhba)_2$], trans-[$UO_2(Hapdhba)_2$], [Pd(Hapdhba)Cl($H_2O$)], [Pd(bpy)(Hapdhba)]Cl, [Ag(bpy)(Hapdhba)], [$Ru(Hapdhba)_2(H_2O)_2$], [$Rh(Hapdhba)_2Cl(H_2O)$] and [Au(Hapdhba)$Cl_2$] are reported, where $H_2$apdhba is the Schiff-base derived from 2-aminopyrimidine and 2,4-dihydroxy benzaldehyde. The complexes were characterized by IR, electronic, $^1H$ NMR and mass spectra, conductivity, magnetic and thermal measurements. The inhibitive effect of $H_2$apdhba for the corrosion of copper in 0.5 M HCl was also determined by potentiodynamic polarization measurements.

Catalytic effects of heteroatom-rich carbon-based freestanding paper with high active-surface area for vanadium redox flow batteries

  • Lee, Min Eui;Kwak, Hyo Won;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.28
    • /
    • pp.105-110
    • /
    • 2018
  • Owing to their scalability, flexible operation, and long cycle life, vanadium redox flow batteries (VRFBs) have gained immense attention over the past few years. However, the VRFBs suffer from significant polarization, which decreases their cell efficiency. The activation polarization occurring during vanadium redox reactions greatly affects the overall performance of VRFBs. Therefore, it is imperative to develop electrodes with numerous catalytic sites and a long cycle life. In this study, we synthesized heteroatom-rich carbon-based freestanding papers (H-CFPs) by a facile dispersion and filtration process. The H-CFPs exhibited high specific surface area (${\sim}820m^2g^{-1}$) along with a number of redox-active heteroatoms (such as oxygen and nitrogen) and showed high catalytic activity for vanadium redox reactions. The H-CFP electrodes showed excellent electrochemical performance. They showed low anodic and cathodic peak potential separation (${\Delta}E_p$) values of ~120 mV (positive electrolyte) and ~124 mV (negative electrolyte) in cyclic voltammetry conducted at a scan rate of $5mV\;s^{-1}$. Hence, the H-CFP-based VRFBs showed significantly reduced polarization.

Electrochemical Polarization Characteristics and Effect of the CMP Performances of Tungsten and Titanium Film by H2O2 Oxidizer (H2O2 산화제가 W/Ti 박막의 전기화학적 분극특성 및 CMP 성능에 미치는 영향)

  • Na, Eun-Young;Seo, Yong-Jin;Lee, Woo-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.515-520
    • /
    • 2005
  • CMP(chemical mechanical polishing) process has been attracted as an essential technology of multi-level interconnection. Also CMP process got into key process for global planarization in the chip manufacturing process. In this study, potentiodynamic polarization was carried out to investigate the influences of $H_2O_2$ concentration and metal oxide formation through the passivation on tungsten and titanium. Fortunately, the electrochemical behaviors of tungsten and titanium are similar, an one may expect. As an experimental result, electrochemical corrosion of the $5\;vol\%\;H_2O_2$ concentration of tungsten and titanium films was higher than the other concentrations. According to the analysis, the oxidation state and microstructure of surface layer were strongly influenced by different oxidizer concentration. Moreover, the oxidation kinetics and resulting chemical state of oxide layer played critical roles in determining the overall CMP performance. Therefore, we conclude that the CMP characteristics tungsten and titanium metal layer including surface roughness were strongly dependent on the amounts of hydrogen peroxide oxidizer.

Lornoxicam & Tenoxicam Drugs as Green Corrosion Inhibitors for Carbon Steel in 1 M H2SO4 Solution

  • Fouda, A.S.;El-Defrawy, A.M.;El-Sherbeni, M.W.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2013
  • Inhibition performance of Lornoxicam & Tenoxicam against corrosion of carbon steel in 1M $H_2SO_4$ solutions was investigated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The inhibition efficiency increased with increasing inhibitor's concentration, but decreased with increase in temperature. Potentiodynamic polarization curves showed that, the inhibitors were of mixed type. The apparent activation energy ($E^*_a$) and other thermodynamic parameters for the corrosion process have also been calculated and discussed. The inhibition of carbon steel corrosion is due to the adsorption of the inhibitor molecules on the surface, which follows Temkin adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

Low Cost and Portable Parahydrogen Generator for the PHIP

  • Kwon, Soonmo;Min, Sein;Chae, Heelim;Namgoong, Sung Keon;Jeong, Keunhong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.126-130
    • /
    • 2017
  • In the developed NMR hyperpolarization techniques, Parahydrogen-Induced Polarization (PHIP) technique is widely utilized to overcome the low sensitivity of the NMR/MRI. Parahydrogen generator is essential to produce high spin order of parahydrogen molecule. Commercial parahydrogen generator is well developed with user-friendly systems. However, it has drawbacks of long preparation time (~ 2h including cooling down time of 1h) and high cost (~ 200 million won) for the commercial setup. We designed a simple and portable parahydrogen generating system with low cost (~ 2 million won), which produce polarization in less than 1 min. With the designed parahydrogen generator, we successfully performed the PHIP with Wilkinson's catalyst on styrene. This study will broaden the parahydrogen based polarization transfer study on many researchers by providing the simple portable and low cost parahydrogen generator.

Polarizations and Electrical Properties of PMS-PZT Ferroelectric Materials (PMS-PZT계 강유전 재료의 분극과 전기적 특성)

  • Kim, J.R.;Kim, H.S.;Lee, H.Y.;Oh, Y.W.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1314-1319
    • /
    • 2004
  • The rosen types of piezo-transformers were prepared and electrical properties were investigated in order to establish the optimum parameters in the process of polarization for ferroelectric materials. Polarization was readily originated with increasing the external energy such as an applied voltage, time, and temperature so that the planar coupling factor and voltage gain were saturated under the conditions of over 14$0^{\circ}C$, applied voltage and time of 4 kV/mm and 3 minutes respectively. The empirical equation for domain rotation probability, which was in proportion to square of an applied voltage and temperature and square root of time, as functions of the above parameters was defined.