Browse > Article
http://dx.doi.org/10.6564/JKMRS.2017.21.4.126

Low Cost and Portable Parahydrogen Generator for the PHIP  

Kwon, Soonmo (Department of Chemistry, Korea Military Academy)
Min, Sein (Department of Chemistry, Seoul Women's University)
Chae, Heelim (Department of Chemistry, Seoul Women's University)
Namgoong, Sung Keon (Department of Chemistry, Seoul Women's University)
Jeong, Keunhong (Department of Chemistry, Korea Military Academy)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.21, no.4, 2017 , pp. 126-130 More about this Journal
Abstract
In the developed NMR hyperpolarization techniques, Parahydrogen-Induced Polarization (PHIP) technique is widely utilized to overcome the low sensitivity of the NMR/MRI. Parahydrogen generator is essential to produce high spin order of parahydrogen molecule. Commercial parahydrogen generator is well developed with user-friendly systems. However, it has drawbacks of long preparation time (~ 2h including cooling down time of 1h) and high cost (~ 200 million won) for the commercial setup. We designed a simple and portable parahydrogen generating system with low cost (~ 2 million won), which produce polarization in less than 1 min. With the designed parahydrogen generator, we successfully performed the PHIP with Wilkinson's catalyst on styrene. This study will broaden the parahydrogen based polarization transfer study on many researchers by providing the simple portable and low cost parahydrogen generator.
Keywords
parahydrogen generator; hyperpolarization; NMR; PHIP;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. A. Osborn and G. Wilkinson, Inorg. Synth. 10, 67 (1967).
2 S. Bouguet-Bonnet, F. Reineri, and D. Canet, J. Chem. Phys. 130, 234507 (2009)   DOI
3 T. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997)   DOI
4 H. Ko, G. Gong, G. Jeong, I. Cho, H. Seo, and Y. Lee, J. Kor. Magn. Reson. Soc. 19, 124 (2015)   DOI
5 J. Im and J. H. Lee, J. Kor. Magn. Reson. Soc. 21, 1 (2017)   DOI
6 C. Witte and L. Schroeder, NMR Biomed. 26, 788 (2013)   DOI
7 C. Bowers and D. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986)   DOI
8 J. Natterer and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997)   DOI
9 K. Jeong, J. Kor. Magn. Reson. Soc. 20, 114 (2016)   DOI
10 K. V. Kovtunov, O. G. Salnikov, V. V. Zhivonitko, I. V. Skovpin, V. I. Bukhtiyarov, and I. V. Koptyug, Top Catal. 59, 1686 (2016)   DOI
11 U. Obenaus, S. Lang, R. Himmelmann, and M. Hunger, J. Phys. Chem. C 121, 9953 (2017)   DOI
12 O. G. Salnikov, K. V. Kovtunov, and I. V. Koptyug, Sci. Rep. 5, 13930 (2015)   DOI
13 F. Reineri, T. Boi, and S. Aime, Nature Comm. 6, 5858 (2015)   DOI
14 T. C. Eisenschmid, R. U. Kirss, P. P. Deutsch, S. I. Hommeltoft, R. Eisenberg, J. Bargon, R. G. Lawler, and A. L. Balch, J. Am. Chem. Soc. 109, 8089 (1987)   DOI
15 T. Theis, M. L. Truong, A. M. Coffey, R. V. Shchepin, K. W. Waddell, F. Shi, B. M. Goodson, W. S. Warren, and E. Y. Chekmenev, J. Am. Chem. Soc. 137, 1404 (2015).   DOI
16 F. Shi, A. M. Coffey, K. W Waddell. E. Y. Chekmenev, and B. M. Goodson, Angew. Chem. Int. Ed. 53, 7495 (2014)   DOI
17 W. Jiang, L. Lumata, W. Chen, S. Zhang, Z. Kovacs, A. D. Sherry, and C. Khemtong, Sci. Rep. B 5, 9104 (2015)   DOI
18 T. Theis, M. Truong, A. M. Coffey, E. Y. Chekmenev, and W. S. Warren, J. Magn. Reson. 248, 23 (2014)   DOI