Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01214

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment  

Raza, Syed Abbas (Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology)
Karim, Muhammad Ramzan Abdul (Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology)
Shehbaz, Tauheed (Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology)
Taimoor, Aqeel Ahmad (Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Main Campus)
Ali, Rashid (Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology)
Khan, Muhammad Imran (Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 213-226 More about this Journal
Abstract
In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.
Keywords
Electrochemical Corrosion Behavior; Al-7075-T6 Alloy; Cyclic Polarization; Potentiodynamic Polarization; Electrochemical Impedance Spectroscopy; Immersion Testing; Re-Passivation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Li, Y. Liang, F. Chen, Y. Han, L. Sun, Metals, 2019, 9(4), 428.   DOI
2 V. Guillaumin, G. Mankowski, Corros Sci, 1998, 41(3), 421-438.   DOI
3 M. Shao, Y. Fu, R. Hu, C. Lin, Mater. Sci. Eng. A., 2003, 344(1-2), 323-327.   DOI
4 J. B. Wang, J. M. Wang, H. B. Shao, J. Q. Zhang, C. N. Cao, J. Appl. Electrochem., 2007, 37(6), 753-758.   DOI
5 F. J. Martin, G. T. Cheek, W. E. O'Grady, P. M. Natishan, Corros Sci, 2005, 47(12), 3187-3201.   DOI
6 P. M. Natishan, W. E. O'Grady, J. Electrochem. Soc., 2014, 161(9), C421.   DOI
7 G. Silva, B. Rivolta, R. Gerosa, U. Derudi, J. Mater. Eng. Perform., 2013, 22(1), 210-214.   DOI
8 G. S. Frankel, J. Electrochem. Soc., 1998, 145(6), 2186-2198.   DOI
9 P. Deepa, R. Padmalatha, Arab. J. Chem., 2017, 10, S2234-S2244.   DOI
10 M. V. Rendon, J. A. Calderon, P. Fernandez, Quim. Nova., 2011, 34(7), 1163-1166.   DOI
11 K. K. Lee, K. B. Kim, Corros Sci, 2001, 43(3), 561-575.   DOI
12 H. Lee, F. Xu, C. S. Jeffcoate, H. S. Isaacs, Electrochem. Solid-State Lett., 2001, 4(10).
13 S. Il Pyun, S. M. Moon, J. Solid State Electrochem., 2000, 4(5), 267-272.   DOI
14 K. C. Emregul, A. A. Aksut, Corros Sci, 2000, 42(12), 2051-2067.   DOI
15 P. R. Roberge, Corrosion Engineering: Principles and Practice, McGraw-HILL, 2008.
16 Q. Meng, G. S. Frankel, J. Electrochem. Soc., 2004, 151(5), B271.   DOI
17 Y. Liu, S. Tang, G. Liu, Y. Sun, J. Hu, Int J Electrochem Sci, 2016, 11, 8530-8545.   DOI
18 A. A. Mazhar, S. T. Arab, E. A. Noor, J. Appl. Electrochem., 2001, 31(10), 1131-1140.   DOI
19 S. Sun, Q. Zheng, D. Li, J. Wen, Corros Sci, 2009, 51(4), 719-727.   DOI
20 Y. Zheng, B. Luo, Z. Bai, J. Wang, Y. Yin, Metals, 2017, 7(10), 387.   DOI
21 A. Boag, A. E. Hughes, A. M. Glenn, T. H. Muster, D. McCulloch, Corros Sci, 2011, 53(1), 17-26.   DOI
22 P. Gimenez, J. J. Rameau, M. C. Reboul, Corrosion, 1981, 37(12), 673-682.   DOI
23 L. N. Zhang, J. A. Szpunar, J. X. Dong, O. A. Ojo, X. Wang, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2018, 49(3), 919-925.   DOI
24 C. M. Brett, Corros Sci, 1992, 33(2), 203-210.   DOI
25 A. S. Bhui, G. Singh, 2017, 35(1539020), 1-35.
26 B. Obert, K. Ngo, J. Hashemi, S. Ekwaro-Osire, T. P. Sivam, ASME International Mechanical Engineering Congress and Exposition., 1999, 0622, 119-133.
27 F. Mansfeld, S. Lin, S. Kim, H. Shih, Corros. Mater., 1988, 39(11), 487-492.   DOI
28 B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Corros Sci, 2008, 50(7), 1841-1847.   DOI
29 I. Boukerche, S. Djerad, L. Benmansour, L. Tifouti, K. Saleh, Corros Sci, 2014, 78, 343-352.   DOI
30 E. E. Oguzie, Corros Sci, 2007, 49(3), 1527-1539.   DOI
31 R. T. Foley, T. H. Nguyen, J. Electrochem. Soc., 1982, 129(3), 464-467.   DOI
32 J. Wysocka, S. Krakowiak, J. Ryl, K. Darowicki, J. Electroanal. Chem., 2016, 778, 126-136.   DOI
33 H. Bohni, H. H. Uhlig, J. Electrochem. Soc., 1969, 116(7), 906-910.   DOI
34 A. D. Isadare, B. Aremo, M. O. Adeoye, O. J. Olawale, M. D. Shittu, Mater. Res., 2013, 16(1), 190-194.   DOI
35 E. Ghali, in Uhlig's Corros. Handb., 3rd Ed., Wiley, 2011.
36 C. S. Jawalkar, S. Kant, i-manager's J. Mater. Sci., 2015, 3(3), 33.
37 M. C. Santos, A. R. Machado, W. F. Sales, M. A. S. Barrozo, E. O. Ezugwu, Int. J. Adv. Manuf. Technol., 2016, 86(9), 3067-3080.   DOI
38 J. T. Staley, R. H. Brown, R. Schmidt, Metall. Trans., 1972, 3(1), 191-199.   DOI
39 A. M. Abdel-Gaber, E. Khamis, H. Abo-ElDahab, S. Adeel, Mater. Chem. Phys., 2008, 109(2-3), 297-305.   DOI
40 B. Zaid, N. Maddache, D. Saidi, N. Souami, N. Bacha, A. Si Ahmed, J. Alloys Compd., 2015, 629, 188-196.   DOI
41 F. Ostermann, Metall. Trans., 1971, 2(10), 2897-2902.   DOI
42 H. A. E. Asghari, 2010, 40(3), 631-637.
43 S. Maitra, G. C. English, Metall. Trans. A., 1981, 12(3), 535-541.
44 S. S. A. Rehim, H. H. Hassan, M. A. Amin, Appl. Surf. Sci., 2002, 187(3-4), 279-290.   DOI
45 R. Ambat, E. S. Dwarakadasa, J. Appl. Electrochem., 1994, 24(9), 911-916.   DOI
46 L. I. Feng, P. Z. Wei, L. C. Xing, J. Z. Qiang, W. C. Jing, Z. Z. Qiao, Trans. Nonferrous Met. Soc. China, 2008, 18(4), 755-762.   DOI
47 N. Birbilis, M. K. Cavanaugh, R. G. Buchheit, Corros Sci, 2006, 48(12), 4202-4215.   DOI
48 F. Andreatta, H. Terryn, J. H. W. De Wit, Electrochim. Acta., 2004, 49(17-18), 2851-2862.   DOI
49 K. Nisancioglu, H. Holtan, Corros Sci, 1979, 19(8), 537-552.   DOI
50 S. I. Pyun, S. M. Moon, S. H. Ahn, S. S. Kim, Corros Sci, 1999, 41(4), 653-667.   DOI
51 S. M. Moon, S. I. Pyun, Corros Sci, 1997, 39(2), 399-408.   DOI
52 W. S. Tait, Corrosion, 1979, 35(7), 296-300.   DOI
53 A. Younis, M. M. B. El-Sabbah, R. Holze, J. Solid State Electrochem., 2012, 16(3), 1033-1040.   DOI
54 P. D. Reena Kumari, J. Nayak, A. Nityananda Shetty, Arab. J. Chem., 2016, 9, S1144-S1154.   DOI
55 R. G. Buchheit, R. K. Boger, M. C. Carroll, R. M. Leard, C. Paglia, J. L. Searles, Jom., 2001, 53(7), 29-33.   DOI
56 A. Aversa, G. Marchese, A. Saboori, E. Bassini, D. Manfredi, S. Biamino, D. Ugues, P. Fino, M. Lombardi, Materials, 2019, 12(7), 1007.   DOI
57 M. Serdechnova, P. Volovitch, F. Brisset, K. Ogle, Electrochim. Acta., 2014, 124, 9-16.   DOI
58 The Aluminium Association, Alum. Assoc. Arlington, Virginia. 2015, 31.
59 R. T. Foley, Corrosion, 1986, 42(5), 277-288.   DOI