• Title/Summary/Keyword: H-L-P inequality

Search Result 11, Processing Time 0.026 seconds

THE HEISENBERG INEQUALITY ON ABSTRACT WIENER SPACES

  • Lee, Yuh-Jia
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.283-296
    • /
    • 2001
  • The Heisenberg inequality associated with the uncertainty principle is extended to an infinite dimensional abstract Wiener space (H, B) with an abstract Wiener measure p$_1$. For $\phi$ $\in$ L$^2$(p$_1$) and T$\in$L(B, H), it is shown that (※Equations, See Full-text), where F(sub)$\phi$ is the Fourier-Wiener transform of $\phi$. The conditions when the equality holds also discussed.

  • PDF

On a Relation to Hilbert's Integral Inequality and a Hilbert-Type Inequality

  • Yang, Bicheng
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.563-572
    • /
    • 2009
  • In this paper, by introducing some parameters and using the way of weight function, a new integral inequality with a best constant factor is given, which is a relation between Hilbert's integral inequality and a Hilbert-type inequality. As applications, the equivalent form, the reverse forms and some particular inequalities are considered.

Range Kernel Orthogonality and Finite Operators

  • Mecheri, Salah;Abdelatif, Toualbia
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.63-71
    • /
    • 2015
  • Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H into itself. Let $A,B{\in}\mathcal{L}(H)$ we define the generalized derivation ${\delta}_{A,B}:\mathcal{L}(H){\mapsto}\mathcal{L}(H)$ by ${\delta}_{A,B}(X)=AX-XB$, we note ${\delta}_{A,A}={\delta}_A$. If the inequality ${\parallel}T-(AX-XA){\parallel}{\geq}{\parallel}T{\parallel}$ holds for all $X{\in}\mathcal{L}(H)$ and for all $T{\in}ker{\delta}_A$, then we say that the range of ${\delta}_A$ is orthogonal to the kernel of ${\delta}_A$ in the sense of Birkhoff. The operator $A{\in}\mathcal{L}(H)$ is said to be finite [22] if ${\parallel}I-(AX-XA){\parallel}{\geq}1(*)$ for all $X{\in}\mathcal{L}(H)$, where I is the identity operator. The well-known inequality (*), due to J. P. Williams [22] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [23]). In [16], the author showed that a paranormal operator is finite. In this paper we present some new classes of finite operators containing the class of paranormal operators and we prove that the range of a generalized derivation is orthogonal to its kernel for a large class of operators containing the class of normal operators.

Weighted Lp Boundedness for the Function of Marcinkiewicz

  • Al-Qassem, Hussain M.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.31-48
    • /
    • 2006
  • In this paper, we prove a weighted norm inequality for the Marcinkiewicz integral operator $\mathcal{M}_{{\Omega},h}$ when $h$ satisfies a mild regularity condition and ${\Omega}$ belongs to $L(log L)^{1l2}(S^{n-1})$, $n{\geq}2$. We also prove the weighted $L^p$ boundedness for a class of Marcinkiewicz integral operators $\mathcal{M}^*_{{\Omega},h,{\lambda}}$ and $\mathcal{M}_{{\Omega},h,S}$ related to the Littlewood-Paley $g^*_{\lambda}$-function and the area integral S, respectively.

  • PDF

BOUNDEDNESS AND INVERSION PROPERTIES OF CERTAIN CONVOLUTION TRANSFORMS

  • Yakubovich, Semyon-B.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.999-1014
    • /
    • 2003
  • For a fixed function h we deal with a class of convolution transforms $f\;{\rightarrow}\;f\;*\;h$, where $(f\;*\;h)(x)\;=\frac{1}{2x}\;{\int_{{R_{+}}^2}}^{e^1{\frac{1}{2}}(x\frac{u^2+y^2}{uy}+\frac{yu}{x})}\;f(u)h(y)dudy,\;x\;\in\;R_{+}$ as integral operators $L_p(R_{+};xdx)\;\rightarrow\;L_r(R_{+};xdx),\;p,\;r\;{\geq}\;1$. The Young type inequality is proved. Boundedness properties are investigated. Certain examples of these operators are considered and inversion formulas in $L_2(R_{+};xdx)$ are obtained.

Degenerate Weakly (k1, k2)-Quasiregular Mappings

  • Gao, Hongya;Tian, Dazeng;Sun, Lanxiang;Chu, Yuming
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.59-68
    • /
    • 2011
  • In this paper, we first give the definition of degenerate weakly ($k_1$, $k_2$-quasiregular mappings by using the technique of exterior power and exterior differential forms, and then, by using Hodge decomposition and Reverse H$\"{o}$lder inequality, we obtain the higher integrability result: for any $q_1$ satisfying 0 < $k_1({n \atop l})^{3/2}n^{l/2}\;{\times}\;2^{n+1}l\;{\times}\;100^{n^2}\;\[2^l(2^{n+3l}+1)\]\;(l-q_1)$ < 1 there exists an integrable exponent $p_1$ = $p_1$(n, l, $k_1$, $k_2$) > l, such that every degenerate weakly ($k_1$, $k_2$)-quasiregular mapping f ${\in}$ $W_{loc}^{1,q_1}$ (${\Omega}$, $R^n$) belongs to $W_{loc}^{1,p_1}$ (${\Omega}$, $R^m$), that is, f is a degenerate ($k_1$, $k_2$)-quasiregular mapping in the usual sense.

Characterization of New Two Parametric Generalized Useful Information Measure

  • Bhat, Ashiq Hussain;Baig, M. A. K.
    • Journal of Information Science Theory and Practice
    • /
    • v.4 no.4
    • /
    • pp.64-74
    • /
    • 2016
  • In this paper we define a two parametric new generalized useful average code-word length $L_{\alpha}^{\beta}$(P;U) and its relationship with two parametric new generalized useful information measure $H_{\alpha}^{\beta}$(P;U) has been discussed. The lower and upper bound of $L_{\alpha}^{\beta}$(P;U), in terms of $H_{\alpha}^{\beta}$(P;U) are derived for a discrete noiseless channel. The measures defined in this communication are not only new but some well known measures are the particular cases of our proposed measures that already exist in the literature of useful information theory. The noiseless coding theorems for discrete channel proved in this paper are verified by considering Huffman and Shannon-Fano coding schemes on taking empirical data. Also we study the monotonic behavior of $H_{\alpha}^{\beta}$(P;U) with respect to parameters ${\alpha}$ and ${\beta}$. The important properties of $H_{{\alpha}}^{{\beta}}$(P;U) have also been studied.

NEW OSTROWSKI TYPE INEQUALITIES INVOLVING TWO FUNCTIONS

  • Liu, Wen-Jun;Xue, Qiao-Ling;Dong, Jian-Wei
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.291-297
    • /
    • 2008
  • In this paper, new inequalities of Ostrowski type involving two functions and their derivatives for mapping whose derivations belong to $L^p$[a, b], p>1 are established.

  • PDF

HEIGHT BOUND AND PREPERIODIC POINTS FOR JOINTLY REGULAR FAMILIES OF RATIONAL MAPS

  • Lee, Chong-Gyu
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1171-1187
    • /
    • 2011
  • Silverman [14] proved a height inequality for a jointly regular family of rational maps and the author [10] improved it for a jointly regular pair. In this paper, we provide the same improvement for a jointly regular family: let h : ${\mathbb{P}}_{\mathbb{Q}}^n{\rightarrow}{{\mathbb{R}}$ be the logarithmic absolute height on the projective space, let r(f) be the D-ratio of a rational map f which is de ned in [10] and let {$f_1,{\ldots},f_k|f_l:\mathbb{A}^n{\rightarrow}\mathbb{A}^n$} bbe finite set of polynomial maps which is defined over a number field K. If the intersection of the indeterminacy loci of $f_1,{\ldots},f_k$ is empty, then there is a constant C such that $ \sum\limits_{l=1}^k\frac{1}{def\;f_\iota}h(f_\iota(P))>(1+\frac{1}{r})f(P)-C$ for all $P{\in}\mathbb{A}^n$ where r= $max_{\iota=1},{\ldots},k(r(f_l))$.

ERROR ESTIMATION FOR NONLINEAR ELLIPTIC PROBLEMS USING THE h-p-MIXED FINITE ELEMENT METHOD IN 3 DIMENSIONAL SPACE

  • Lee, Mi-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.237-260
    • /
    • 2001
  • The approximation properties for $L^2$-projection, Raviart-Thomas projection, and inverse inequality have been derived in 3 dimensional space. h-p-mixed finite element methods for strongly nonlinear second order elliptic problems are proposed and analyzed in 3D. Solvability and convergence of the linearized problem have been shown through duality argument and fixed point argument. The analysis is carried out in detail using Raviart-Thomas-Nedelec spaces as an example.

  • PDF