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BOUNDEDNESS AND INVERSION PROPERTIES
OF CERTAIN CONVOLUTION TRANSFORMS

SEMYON B. YAKUBOVICH

ABSTRACT. For a fixed function h we deal with a class of convolu-
tion transforms f — f * h, where

(f * h)(z) = 21x/ A ) dudy, o € Ry

as integral operators LP(R+;mdw) — L.(Ry;zdz), p,r > 1. The
Young type inequality is proved. Boundedness properties are in-
vestigated. Certain examples of these operators are considered and
inversion formulas in La(R; zdz) are obtained.

1. Introduction

As it was shown in [6], Ch. 4, the convolution transform

(L) (f*h)(z / / —_L+%>f(u)h(y)dudy, z>0

is well defined in the Banach ring L°(R) = L1(Ry; Ko(z)dz), where
the space LO(R) is equipped with the norm

(1.2) .y = /0 " Ko(@)|(«)|da.

Here Ky(z) is the Macdonald function of the index zero [1]. It satisfies
the following norm inequality (see [6], Th. 4.9)

(1.3) I1f *hllzory) < Ifllo@) 1Pl Lomy)-
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The convolution transform (1.1) is related to the Kontorovich-Lebedev
transformation [3], [5] and [6]

(1.4) KhU%=AwKa@V@M%TER+

by means of the factorization identity, i.e.
(1.5) KZT[f * h] = Ku-[f]Kz [h], TC R+.

It is proved in [5] and [6] that transformation (1.4) is a bounded operator
from LY(R.) into the space of bounded continuous functions vanishing
at infinity. Its kernel consists of the Macdonald function K,(z) of the
pure imaginary index v = ¢7. This function (cf. [1]) satisfies the differ-
ential equation

d? d
(1.6) zzd—;; + zd—: — (22 4+1vu=0.
It is the solution that remains bounded as z tends to infinity on the real
line. The Macdonald function has the asymptotic behavior [1]

m\1/2 _,
(1.7) K,(z) = (—2—;) e ?[1 + O(1/z)], z — 00,
and near the origin
(1.8) MK, (2) = 2M710([u)) + 0(1), z — 0,
(1.9) Ko(z) = —logz+ O(1), z — 0.

Furthermore, it satisfies the inequality [K;,(z)| < Ko(z), 7 > 0 and
therefore we have

| Ko [F1] < 1 fllLomy)-

We note here that the Macdonald function K, (z) has the following in-
tegral representations (see [4], Vol. I, relations (2.4.18.4), (2.3.16.1))

o 1 v [ 22
(1.10) Ku(2) =/ e 2t cosh ptdt = = (E) / et w1t
0 2\2/ Jo

According to Lemma 2.3 [6] we see that the space L°(R.) contains all
spaces Ly(R4;zdz), p > 2, which are normed by

o0 1/17
(1.11) Hﬂmmwm=(AIﬂM%m)-
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Therefore integrals (1.1) and (1.4) exist as Lebesgue integrals when f €
Ly(Ry;zdz). However, if we define transformation (1.4) in Ly(Ry; zdz)
as

N

(1.12) K”-[f]z lim KZT(:c)f(x)dx,
N—oo 1/N

where the limit is taken in mean square sense with respect to the norm of
Ly(Ry; ﬂ%v‘ sinh w7dr), then (cf. [6], section 2.3) K;; : Lo(Ry; zdz) <
La(Ry; %T sinh 77d7) is bounded and forms an isometric isomorphism
between these spaces with the Parseval identity (3], [6] of the form

(1.13) /Ooa:|f(:c)[2da: - % /Ooov'sinhWT|KiT[f]|2d7'.

0

Two definitions (1.4) and (1.12) are equivalent, if f € La(R4;zdz) N

LO9(R;xdz). The inverse operator in the latter case is given by the

formula

Kir (x)
z

1.14 =— h Ki:[f]dr,

114 f@) =5 Jm / rsinhrr [fldr

where the limit is meant in mean square sense with respect to the norm
of the space Lo(Ry;xdx). It can be written for almost all z € Ry in
the equivalent form (see [6], formula (2.70))

(1.15) flz) = — d:c/ / 7 sinh 77 K7 (y) K[ fldydT.

The main goal of the paper is to establish boundedness properties of
the convolution transform (1.1) with respect to f € L,(R4;zdz),p > 2
and h € LO(R.;zdz). To do this we prove the Young type inequality [2]
and represent (1.1) in terms of the Kontorovich-Lebedev transformation
(1.14). Finally we give certain examples of such transforms and find their
inversions in Ly(Ry;zdz) as compositions of the convolution transform
and differential operator of the infinite order.

2. Young type inequality

We have

THEOREM 1. Let0 <v,8 <1, v+B8 < 1landf € Ly/g(Ry;zdz), h €
Li/,(Ry;zdz). Then convolution transform (1.1) exists as a double
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Lebesgue integral for all x > 0 and belongs to Ly,,(Ry;zdz), where

7+ﬁ+2|'v—ﬁ| < p < 1. Moreover, it satisfies

@1 =R, @ ede) < CumsllfllL, s®ewan bl Ly, Ry ey

where
o 8 1— l‘ﬁ ﬂ u
(2.2) qmﬁ=WW*(A fJ%Kg%J@Kﬂ(@M>-
1—y—
When v # 8, p < v+ 8 <1, then (2.2) satisfies
(2.3)
Y8
< B oy B8 <’y +ﬁ>7+,@+lv—ﬁl-2u o (2 ytB8+ Iy — 3|>
- I 7

) v+8

X[F(|7—ﬂ[)]k%¢ r(=pebedl
Finally, when vy = 8 =v < %, v < pu <1, then (2.2) is estimated by
I(p—v)

24 C < 2= 2u—v) fr T T
( ) [TRINY K \/_F (N oy %)

Proof. Taking 0 < «, 8,y <1, a+ B+ = 1 we begin to estimate
(1.1) by using Holder inequality for three functions. Thus via (1.10) and

the elementary inequality Ko(vz? + u?) < Ko(x) we obtain
|(f x h) ()]

B
o0 oo _1 u?4y? yu
i(/ [ “)rf(un%ud“dy)
2z 0 0

Y

0o oo _1(puthi dudy
(/ / A )t e
0

oo poo _1fputty? yul) o “
/ / e 2( “ +m>u1a—8y?_a‘ldudy
o Jo
y+8-1 oo 8
_2 (/ Ko(\/m2+u2)|f(u)|%udu>
0

IN

X

(2.5)

X

x
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([ Kou/W)nh(y)n%ydyf

(04
1 z___ﬂ_ l_ _ _
([ A )
2Y+6-1 8y z—‘n’—#‘—) =8 foq )
< —— K / / ua y a dudy

X ||f”L1/5(R+;zda:)HhHLl/ﬂ,(R.,_;zdz)'

The latter double integral in (2.5) we calculate employing polar coordi-
nates u = rcosy, y =rsing, r > 0,0 < ¢ < 7 and making then the
substitution ¢ = tan ¢. Appealing again to the second integral represen-
tation of the Macdonald function in (1.10) we have the result

a3
y T R
m " )uloTﬁ'yﬁTldudy =K% 5(x).
e

By letting o = 1 — 8 — 7 inequality (2.5) takes the form

|(f * h)(@)|
27+[3 1—v- ,BKl 5 7( )K3+ﬂ(

a8 )Ly, s@pswan MLy, (R s2dz)-
-

Hence (see (1.11))

||f * h||L1/#(R+;a:dx)

_ (/Ooo|(f*h)(x)\%xdx>#

) 1—y-8 448 B
v +A-1 (/ K s (x)Ky* (x)dm)
0

1—v—8

IA

X Nl Ly s szdn I L, ., Ry 2dz)

and we arrive at (2.1), where integral (2.2) is convergent under condi-
tions of the theorem, which follow correspondingly from the asymptotic
behavior (1.7), (1.8), (1.9) of the Macdonald function in the neighbor-
hood of the origin and infinity.

In order to prove inequality (2.3) we appeal to the second integral
representation (1.10) (cf. (1.8)) and easily deduce for all z > 0 the
following inequality

VK, (z) < 2¥7D(|y)), v > 0.
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Hence we have

Lloo=p ly=8] |y—Bl-14y+8 _ S
K % (z) <z B {F <M)} -
T3P 1-v-8

Then applying (1.10), the generalized Minkowski inequality and calcu-
lating the values of elementary integrals we may estimate integral (2.2).
Indeed, we obtain

Cumﬂ

1—v-8
< 92(v+B-1)+|y-6| [F ( Iy~ B )] !
- 1—-v—p
pad)

u
([ ([ ) )
0 0

1-y—A
2%7+ﬂ—1%Hv—ﬂl[p ( v -5l )} i
1-v-=0

oo 0o B\ VB
_atB _|y-B8l _(v+8) Y+B
X (/ dt(/ 27 T e COShtd:L'>
0 0

= 22(v+B-1)+|v-B|

I‘( Iy — 4] 1—y-8 N+ B Y+B+v—B81-2p
[ 1—7—ﬁ>] ( © )

00 y+5
(g _2tB+1r—4 dt
- m 2u—|v—Bl-y—8
0 cosh 5 t

:2%w4rﬂ—ﬂ(7+ﬂ>7“”“*”4u
7

Iw<2_7+ﬂ+h—ﬁU[F(lv—m HL”%
B 1l—vy-p

2 (2u—'y—ﬁ—|7—ﬁ|) T+8
2(v+8)

T (%—l%ﬁl—v—ﬁ)

X
®

IN

X

X

X

Y+

Employing the Gauss-Legendre duplication formula for Gamma func-
tions (see [6], formula (1.30)) in the latter Gamma-ratio we get imme-
diately inequality (2.3).
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In the case (2.4) we find directly
Cp,,v,u

o0 1 H
— 221/—1 (/ —27 Oﬂ {L')dx)
0
(2:6) < 22”"1/ dt (/ T ECOShtd:c)“
- 0 0

- - I'(p—v)
— 22(1/ 1), 2(p—v)
. \/EF (u —v+ %)

and complete the proof of Theorem 1. a

COROLLARY 1. Let 1 < s < oo and h € Ls(R4;zdz). Then operator
Kh: Ly(Ry;zdz) — L (R+;:vda:) (Knf)(x) = (f * h)(x) is bounded,

11
where 1 < p,r < 00 and > max (5,5

In particular, let h(z) = e 2<%2¢6"1 0 <5 < I, £ > 0. Then it is
not difficult to see that h € Lgs(Ry; xdm), when ¢ > 1 — 2. Substituting
h in (1.1) and calculating the inner integral with respect to y (see [6],
section 4.5) we arrive at the following transformation

© uEKe(V22 + u? + 22U cos b)
Kf)(z) = 2t~ / i du.
(Kf)(z) == 0 (22 + u? + 2zu cos §)8§/2 f(u)du

So if, for instance, s > 2, then L,(Ry;zdz) C L°(R.) and (2.7) is
a bounded operator from Lo(Ry;zdz) into L,(Ryjzdz), 1 < r < 2.
Theorem 1 excludes the case r = 2. Nevertheless, we prove in the next
section that (1.1) keeps be bounded as the operator from Lo(R4;zdz)
into Ly(Ry;zdx) for any h € LY(R,). Moreover, we establish the gen-
eralized Parseval equality for the convolution transform (1.1) and obtain
its inversion formula in certain particular cases.

(2.7)

3. Boundedness properties in Ly(R; zdz)

Let us extend the norm inequality (2.1) for (f * h)(z) if one of the
functions, say h, belongs to L°(R.) and f € La(Ry;zdz).
We have

LEMMA 1. Let f € Ly(Ry;2dz) and h € L°(R..). Then convolution
transform (1.1) exists for each x > 0 as the Lebesgue double integral
and belongs to La2(R+;xzdx). Moreover,

(3'1) Ilf * h||L2(R+;xdz) < |‘fl|L2(R+;zda:)”h”L0(R+)'
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Proof. Indeed, with Schwarz’s inequality we deduce

(= B) |2<—// ‘ ””L>|h<y>f‘5“d—y

u

/ L ) ) dud.

Since (see (1.10))

(3.2) /Oooe 2( _L+L)%" = 2Ko(ve? +y?),

it follows that

(3.3)
[ * B) (@)
< gz [ Kl/@EPhway

X

/ [ st e H (=5 2+ﬂ>nh( \dudy
/ Ko(w)Ir(v) 'dy/ / e ) iy

Hence multiplying both sides of (3.2) by = we integrate with respect to
x € R4. Inverting the order of integration by the Fubini theorem we
invoke (3.2) to obtain

(3.4)

i

(e}

A z|(f * h)(z)|*dx
< [ " )£ () Pdu / " Ko(w)|h(y)\dy / " Ko/ T 7 h()ldy
0 0 0

< [ s ( I Ko(y)|h(y)|dy)2 .

Now we recall norm (1.11) and write (3.4) in equivalent form (3.1).
Lemma 1 is proved. O

The relationship between operator (1.1) and the Kontorovich-Lebedev
transformation (1.4) under the conditions of Lemma 1 is given by

THEOREM 2. Let f,h be under conditions of Lemma 1. Then the
transform (f = h)(z) satisfies factorization identity (1.5). Furthermore,
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for almost all x > 0 the generalized Parseval equality holds

(3.5) (f *xh)(z )—-3 lim NTsinhﬂ'TK (= )Kw[f] K [h]dT,

71'2 N—ooo 0

where the limit is taken with respect to the norm of La(Ry;zdz). In
particular, it can be written in the form

2 [ K;
(3.6) (f*h)(z)= F/ Tsinh w7 Z;(m) K [f)Kir[h]dT,z > 0,
0
if the latter integral converges absolutely and uniformly on x > x9 > 0.

Proof. By virtue of the formula (1.15) we have for almost all z > 0

(3.7  z(f*h)(z) = — dx/ / 7sinh 77Ky (y) K7 [ f * h]dydr.

Meanwhile, since h € LO(R.) then it follows that | K, [h]| < ||h[| LO(R 4

Further, as it is proved in [6], Lemma 2.5, the kernel [J K. )dy €

Lo(Ry;7sinh 7r’rd7) for each z > 0. Therefore we have that the product
K. [h] fo y)dy € Lo(Ry; 7sinh w7d7). In the same time if we denote

by
1, ifye€|0,z],
ex =
) {o, if y € (z,00),

we see that 6,(y) € L°(R4) and the factorization property (1.5) takes
place in the Banach ring L%(R..) for the functions h, 8,(y), namely

Thus Lemma 1 and the Parseval equality (1.13) yield

2 o X .
—77_2/0 /0 7 sinh 77 K7 (y) Kir [h) Kir [ fldydT
2

(3.8) == 7 sinh 77 K7 [f] Kir [h * 05])dT
0

= /Ooo uf(u)(h * 6;)(u)du.

Substituting the double integral (1.1) for (h+8;)(u) in (3.8) and inverting
the order of integration by using Fubini’s theorem, we get

/oouf(u)(h*ﬁz)(u)du= /mv(f*h)(v)dv
0 0
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Consequently, for almost all z > 0, we obtain

(3.9) a(f *h)(=) ﬁz g / / 7 sinh 7 Kir () Kir f1 Kir [R]dydr

and comparing with (3.7) we verify the factorization equality (1.5) for
(f * h)(z) under conditions of the theorem.

It is possible to justify the differentiation under the integral sign in
(3.9) by the absolute and uniform convergence of the differentiated in-
tegral. Therefore in this case we write (3.9) in the form (3.6). However,
comparing with (1.15) we find, that for the sequence fn of Lo(R4; zdzx)-
functions, which is defined by (1.14) the differentiation in (3.9) is per-
formed and

(s h)(@) = 25 [ rsinhmr ST K ) 1

7-[-2
(3.10) o [N K, (
= | T sinh 77 ————= K;; [ ] K [h]dT,
where

. ) Kilf], ifTel0,N],
Kirlfn] = {0, if 7 € (N, 0).

Indeed, the integral (3.10) converges uniformly with respect to = over
any finite interval (0, N). Further, invoking (3.1) we derive

Nf*h— fn* PRy sadey = I = IN) * PllLam snds)
< Hf - le|L2(R+;zd:1:)||h’||L0(R+) — 0, N — oo.

Thus the limit of (fy * h)(z) with respect to the norm in Le(R; zdx)
coincides with (f * h)(z) and we prove (3.5) and complete the proof of
Theorem 2. a

COROLLARY 1. Under conditions of Lemma 1 the Parseval equality
(1.13) takes the form

/ z|(f * h)(z)|?dz = %/ 7 sinh 77| K, [f] Kir [h]|2dr.
0 0
In particular, for f € LO(Ry) N Ly(R4; zdz) it gives

/Ooo:cl(f * f)(z))%dz = % /OooTsinh 77| K [ f]|*dr.

If h € L°NLy(Ry; zdz), then K [h] € Ly(Ry; 7 sinhwrdr). There-
fore via Schwarz’s inequality we see that convolution transform (1.1) can
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be written in the form (3.6). Invoking relation (2.16.2.1) from [4], Vol.
IT we obtain

| alts «my@da
0

(3.11) < %/OOOTsinhWT\KiT[f]KiT[hH '/0 K (z)dx|dr

= 2 /OooTsinh (gT) | Kir [ f]Kir [R]|dT.

™

Hence by virtue of (1.13) we find

2 /Ooo T sinh (g‘r) |Kir[f]Kir[h]|dT

s
1 oo
<= / 7 sinh 77| Kir [f] Kor [B]
0
T 2 o0 . 9 1/2
< 5 (ﬁ/o 7 sinh 77 | K7 [ f]| dT)

o oo 1/2
X (—2/ TSinhﬁTlKiT[h”QdT)
™ Jo

s
- 5||Ki’r[f]||L2(R+?;2§Tsinh7r7'd7)I|Ki’r[h‘]HLQ(R+;‘;2§Tsinh7er‘r)

"
= §||fHL2(R+;zdz)Hh||L2(R+;wdz)-
Combining with (3.11) we arrive at the following norm inequality for
operator (1.1) in L;(R4;zdx)
T
1 * Ry (R wda) < §||f||L2(R+;wdac)|lhlle(R+;zda:)>

which is a case of (2.4) when v =%, p=1.

4. Examples

In this section we study boundedness and inversion properties of cer-
tain convolution transforms of type (2.7) in the space Ly(R.;zdx) by
letting concrete values of parameters £, §. Indeed, taking into account
a convergence of the inner integral with respect to y in (1.1) we may
put in (2.7), for instance, § = %, ¢ =land § =0, { = 3. Then for

each case we obtain, correspondingly, hi(z) = 1, ha(z) = e—\% and we
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consider the following operators (KCp, f)(z) = (f *hi)(z),z > 0, ¢ = 1,2.
According to (2.7) the operator (Kp, f)(z) takes the form

Ki(V22 +u?
(4.1) (Kn, f) / 1 Nt KlVar + v ey,
, Va? +u?
Meanwhile, since the Macdonald function of the index % reduces to

s

Kya(z) =e 5

(see [1]), we may write (Kp, f)

4. e u .
(4.2) (Knyf) \/2:6/ N

The result is stated by

THEOREM 3. Operators Kp, : Loy(R4;2dz) — Lo(Ry;zde), i = 1,2
are bounded and exist for all x > 0 as Lebesgue integrals (4.1), (4.2),
respectively. Moreover, the following norm inequalities

s
(4'3) |I’Ch1f||L2(R+;:cdz) < _||f||L2(R+;xdz)7

T
(@.40) o lcsyinies <731 o e

hold. Finally, an arbitrary f € Lo(Ry;zdx) is to be determined by the
corresponding inversion formulas

N z(z— 4 -z
(45)  f(x)= lim = b ( : dm))x(’chlf)(m),

N—voo T - (2n —1)2
(4.6)
N 4|z — -% - :L‘i:g
fz) = 7:\//57? J\}Evnooé 1:‘[1 (1 * ( (2nd— 1)2 & )> 2(Kn, f)(2),

where the limit is taken with respect to the norm in Lo(R4;zdz).

Proof. By using relations (2.16.2.1) and (2.16.6.4) from [4], Vol. II

we find that Kir[h1] = gofrs, Kirlho] = —5=—. Hence since

hi,hy € L°(R..) we may calculate their norms by (1.11) and the above
mentioned values of integrals. Thus via Lemma 1 we immediately arrive
at the inequalities (4.3), (4.4). Appealing to Theorem 2 and Schwarz’s
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inequality it is not difficult to verify that operators (4.1), (4.2) may be
written as

an  Knhe =2 [ s () B g

(4.8) (Kn, f) () = \/g /0 ~ rtanh Mﬁ;(i) K [fldr

Let us set now
N x|z — % - :ci;g

@9 fw@ =T [1+ ( s A
n=1

where the product means a composition of differential operators. We
will show that ||fv — fllz,(® jzdz) — 0, N — 00 and therefore establish
inversion formula (4.5) of the convolution transform (4.1). In the similar
manner we may prove (4.6).

In view of (4.7) we have

(4.10)
In ()
4 N TV\X — % — l‘-—dz% 00 .
= %};Il 14+ ( G 1)2d ) /0 7 sinh (gT) Kir(z)Kir [fldr
oo N T\T— %— - ‘f:
- W;;ZL: 0 7sinh (gT) H 1+ ( (2:_ 1)237) KlT(m)KzT[f]dT

The change of the order of operators in (4.10) is due to the absolute
and uniform convergence on z > xzp > 0 of the latter integral. Indeed,
invoking (1.6) we find that

2

11_\7[ 1+$($_%—x%7> Kir(z) = K; (x)lj—vl<1+_(_2_7-2_.)

n=1 (27’1, - 1)2 n=1 e 1)2
Consequently,
(4.11)
4 [ @ 5 T2
fn(z) = 7T—25;/0 7 sinh (57) K; (96)};11 <1 + m) Ki-[fldr.

Splitting (4.11) on two integrals fOE and |, E°° it is not difficult to verify
the interchange in the first integral over any finite interval [0, E| since
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the integrand is analytic with respect to > 0. To change the order in
the second integral we show that

/oo 7 sinh (%7’) Kir(z) ﬁ (1 + (_277-—2T)2> Kir[f)dr

E n=1

—0,F — o0,

uniformly for all z > 0. With Schwarz’s inequality we obtain
(4.12)
o] N 2

/E T sinh (—gT) K (x) H (1 + (_2?7—__1)_2> Kirf]dr

n=1

1 0 L\
< — 7 sinh 77| K dr
([ K111

X -/OooTtanh (%z) | Kir ()| [ﬁ (1 + (_271_7——2—1)5)}20”

n=1

1/2

Further we use the uniform estimate (1.100) in [6] for the Macdonald
function and the latter integral in (4.12) is majorized by

/OooTtanh (%) | Kr (2)|? [Tﬁ (1 N (2717_%1)3)]2(#

=1

1/2

i T 1/2
< Ko(zg cos d) (/ T tanh (7) 1+ 7'2)2Ne‘257d7-) < 0
0

when z > zo > 0, § € (0,%). Thus via (1.13) the right-hand side of

(4.12) tends to zero when E — oo. Moreover, employing elementary
infinite product

0 2
T T
(4.13) cosh (—2-) =11 (1 + a1 1)2) ,
and the inequality

N T2
H’IL:]. (1 + (217,—1)2)
cosh(mr/2)

(4.14) | Kir [f]] < |Kir[f]l;

where the right-hand side of (4.14) belongs to Ly (R; ;257' sinh w7dr) we
deduce that fx(z) € L2(Ry; zdz). Combining with (4.11) and (1.13) it
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follows that

]
| alfw@as
0
(4.15) L o N , 2
T T
=22, 7 tanh (7) K”[f]};[l <1+ @17 1)2) dr.
Appealing to Levi’s theorem and invoking (4.13) we have
4 [ T N 72 ’
Nim /O rtanh (75) Kiflf]nH (”W) ar

=1

9 o N () )
== 7sinh 77 | K- [f]|* dr = z|f(z)|“dx.
™ Jo 0
Consequently,
im [ o|fw()2de = / 2|f (2)Pda.
N—=o0 Jg 0

It is clear (see (4.11)) that

N 2
cosh(7n7/2)

KiT[fN] = K’LT[f]

and obviously converges pointwisely to a function K;.[f]. But
(4.16)

| aliw@) - s@Pdo = 5 [ rsinhar | (] - Kolf)dr.
0 0

The right-hand side of (4.16) tends to zero when N — oo via the dom-
inated convergence theorem since |Ki[fn] — Kir[fll < 2|Kir[f]| (see
(4.14)). Thus we establish that fy(z) — f(z) in Ly(R4;zdz) and for-
mula (4.5) is proved.

Concerning (4.6) we have accordingly

d d?

N drl{z— 4 — 2=
fN(x) = 71':;_;1,‘ 1:[1 <1+ ( (Qnd_ 1)2 ’ )) a?(K:}uf)(-’E)

Hence after substitution the representation (4.8), we change the order of
N-th product and the integral by the same motivation as above. Then
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invoking (1.6) it becomes
(4.17)
9 N

fn(z) = /Ooo'rtanh(ﬂ'T)KiT(x) H

==
X
n=1

472

(1 + @531_)2) Ki-[fldr.

Passing to the limit in (4.17) with respect to the norm in Ls(R; zdx),
when N — oo we use the fact that the product tends to its value

had 472
coshnr = H (1 + m)

n=1
and establish (4.6). Theorem 3 is proved. d
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