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ABSTRACT. In this paper, we first give the definition of degenerate weakly (k1,k2)-
quasiregular mappings by using the technique of exterior power and exterior differential
forms, and then, by using Hodge decomposition and Reverse Holder inequality, we obtain
the higher integrability result: for any g satisfying

0 < k1 (1)*/*n!? x 2711 x 100™ [21(2”“’1 + 1)} (I—q)<1

there exists an integrable exponent p1 = pi(n,l, k1,k2) > [, such that every degenerate
weakly (k1, k2)-quasiregular mapping f € W,2%(Q, R") belongs to WP (Q, R"), that is,

loc loc

f is a degenerate (k1, k2)-quasiregular mapping in the usual sense.

Denote by Al = AY(R™),l = 1,2,---,n the linear space of l-exterior forms
(also called I-covectors) in R™. It is a linear space of alternating [-tensors. Set
A° = R and AY(R") = 0 for I < 0 or [ > n. The dimension of A'/(R") is ().
The Hodge star operator * : AY(R") — A""Y(R") is defined for a,3 € A! by
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aAxf = B A*xa = {a,B)vol, where vol be the volume element in R™. Thus the
Hodge star is a linear isometry between A! and A”~!. For [ = 0 and | = n this
formula reads *1 = vol and *vol = 1.

Let © C R"™ be a domain. A differential [-form « on  is simply a locally
integrable function or Schwarz distribution on € with values in A’ = AY(R"™). We
write a € D'(Q, AY). If we denote by x1, 29, -+ ,, the coordinate in R", then the
differential form « : Q@ — AY(R™) may be written uniquely as

a(z) = Z iy (X)day = Z iy (X)dxsy Ao A dxy,

1<ip <<y <n, 1<ii<--<4<n

here «;,...;;(x) be functions or distributions and I = (é1,42,--- ,%;) be ordered I-
tuples. The coindex J of I is an ordered (n — I)-tuple, consisting of index in
N = (1,2,--- ,n) but not in I. The exterior derivative d : D'(Q2, A') — D'(2, Al+1)
is a linear operator, determined uniquely by the following conditions:

(i) for I = 0, df is the differential of f.

(ii) d(a A B) =da A B+ (=1)la A B for a € D'(Q,A!) and 5 € D'(Q, AF).

(iii) d(da)) = 0 (Poincaré’s Lemma).

The formal adjoint d* of d is called the Hodge codifferential, is given by

d* = (=)™ dx : D'(Q, AT = D'(Q, A).

The spaces of exact and coexact [-forms are defined, respectively, by

ker(d) = {w € D'(Q,A) : dw = 0}

ker(d*) = {w e D'(Q,A') : d*w =0}
Let G be an n x n matrix. The [-exterior power of G is a linear operator

Gy : A(R™) — AY(R™)
defined by
Gl#(al/\az/\~~/\al) =Gay ANGag A -+ A Gay,

where a, ag, - -+, oy € AL(R™). We have the obvious relations G;;£ = detG, G;E =G.
The linear transform G, can be expressed as an (}') x (') matrix whose entries are
I x I minors of G and denoted by G, = (detAl) € R(I*G) where I, .J be ordered
[-tuples and _ '
A
det Al = det REEE
a5 A
If A, B are two matrices, then we define (4, B) = Tr(BT A),|A|]> = (A, A), here BT
is the transpose of B. A useful inequality of G;ﬁ is (See [6,P220])

(1) ('1GLP* < (DM IGE,
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where 1 < k <[l <n. Take k = 1 in the above inequality yields
(2) (1)1G%” < (MG
Moreover, if [ = n, then
(3) n"/2|detG| < |G["
For mapping f = (f', f2,---,f") € Wl’q(Q,R"),(l < ¢ < o0), denoted by

loc

Df(x) = (g—g] . and Jy(z) = detD f(x) the Jacobi matrix and the Jacobian

of f, respectively. In [3], the author gave the following definition.
Definition 1. A mapping f = (f!, f2,---,f") € Wli’f(Q,R"),(l < g < ) is
called weakly (k1, k2)-quasiregular, (1 < k1 < 00,0 < kg < 00), if Jf(x) > 0, a.e.Q
and

|Df(x)|™ < kin™?Jf(x) + k2, ae.Q

If ¢ > n, then f is called weakly (k1, k2)-quasiregular mapping.

We now give a more general definition.

Definition 2. A mapping f = (f*, f2,---, f") is called degenerate weakly (ki, k2)-
quasiregular, (1 < k; < 00,0 < ko < 00), if

(i) f € Wypd(,R"),1 < q < o0;

(i7) there exists I, 1 < I < n, such that (Df)%é = (detAL)(pyx(ny # 0, det A% > 0,
a.e., and (Df);“‘7£ =0,ae,k=101+1---,n.

(iid) IDF@) < ki () 202 (Df @)y + o, ae. O
If ¢ > I, then f is called degenerate (ki, ka)-quasiregular.

Remark 1. If [ = n, then Definition 2 coincides with Definition 1. Definition 2 can
be used in degenerate case since there are only the ! minors of D f(x) in (iii), here
the word degenerate means Jy¢(z) = 0,a.¢.Q, and the rank of Df(z)isl:1 < <n.
See [11] for some results of degenerate quasiregular mappings.

Qusiregular mappings begun to be studied by Yu. G. Reshetnyak in 1966. See
also the monograph [9]. The main results in [9] are the discrete and openness for
quasiregular mappings. A few years later, O. Martio, S. Rickman and J. V&sila
established the normal family and distributive theories of quasiregular mappings
by using the method of modulus of space curve families and the inequalities for
modulus. See also [10]. In the 1990’s, T. Iwaniec, G. Martin and C. Sbordone
obtained the Liouville theorem, regularity and removability theories of quasiregular
mappings in even dimensions ([7]) by using the result of quasiconformal 4-manifolds
established by S. K. Donaldson and D. P. Sullivan. Then, they generated the regu-
larity and removability results to all dimensions by using the method of harmonic
analysis and Sobolev space method for partial differential equations ([8]).

Weakly (k1, k2)-quasiregular mappings are generalizations of quasiregular map-
pings ([3,12]). In [3], the authors gave its definition and obtained the regularity
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result. In the mean time, [3] obtained the integrable exponent estimate for very
weak solutions. In this paper, we generalize the result of [3] to degenerate case.

Theorem. For any 1 satisfying 0 < ki (1")3/2n!/2x2m 1% 100" [212" 3+ 1)] (1—-
q1) < 1, there exists an integrable exponent p1 = p1(n,l, k1, ko) > I, such that for
any degenerate weakly (ki,k2)-quasiregular mapping f € W'ﬁ)’cql (Q, R"™), we have

fe Wﬁ)’pl (2, R™), that is, f is degenerate (ki, ko)-quasiregular in the usual sense.

C

Remark 2. The difficulty of this paper is that for degenerate quasiregular mapping
f, if the rank of Df(x) is I : 1 <1 < n, then J¢(z) = 0, a.e., one can not obtain
the higher integrability result by using the method of [3]. We will overcome this
difficulty by using the technique of differential forms.

We give some lemmas that will be used in the proof of the theorem.

Lemma 1. Ifu € I/Vi)’]”(Q,R”)7 1< p< oo, then

lu = @5, | o (s, < 227 Dull o s,
for any ball B, CC ). Here upg, = fB u(x)dx is the integral mean of u over B,.

Proof. This lemma follows if we take o =1 in [1, Lemma 1.5]. O

Lemma 2. Suppose that 1 <p <n. Ifue Wll’p(Q,R"), then

oc

D D (n—p)/np
o= T8l o ) < CO02 (20) T Dl

for any ball B, CC €.

This lemma comes from [5] Lemma 7.16 and 7.12. In the following, C(n) will
always denote this constant.

Lemma 3(Hodge decomposition). Let w € L7 =9)(Q,AY), 7 > 7/4,e < 1/2. Con-
sider the Hodge decomposition

lw|fw =da +d*B, a € LT(Q, A1), 3e LT(Q, AT
If w is closed, then
(4) ld*Bll- < 100" 7e|lw|| 1.,
If w is coclosed, then
n? —
(5) ldadl> < 100" reflwl| 1,

Lemma 4([4], Reverse Holder inequality). Let0 < 2r < rg < dist(xg, 082),x9 € Q.
If for functions g(z) € LP(Ba,)(1 < p < o0), h(z) € L*(Ba,.),t > p, it holds

p/s
© f lo@Pir <o gz +c (7{3 o) dz) +f Ih(a)p,
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here 1 < s < p,0 < 0 < 1, then there exist exponent p' = p'(6,p,n,C) > p, such
that g(z) € L¥ (), and

loc

o (f T |g<x>|p/dx)1/p/ <c, { (f ) |g<x>|pdx)1/p +(f |h<x>|pdw)1/p} ,

here Cy depends only on n,C,p,0,rq.
Lemma 5. Let F = (F',F?,.-- [F") € Wol’l*E(Q,R"),l <l<n0<e<l1/2
then
/ |dF™|"¢dF" A - NdF" Nday < 21 % 100"25/ |DF|'"~¢dx
Q Q

for any ordered (n — I)-tuple J.

Proof. Firstly, if [dF| = 0, then we take |dF"1|~¢dF" to be 0, the result is obvious.
Else, consider the following Hodge decomposition

(8) |dF"|"*dF" = da + d* 5.

Since F' = 0 on 0f), then by the uniqueness of_ Hodge decomposition, @« = 5 =0 on
0f). By Poincaré’s Lemma we know that dF" is a closed form. By Lemma 3, we
obtain

el dF 12 < 20 x 1007 e |ldF |12
— €&

It is obvious that dF2 A--- AdF% € L%(Q, A=1). Since i;j: and =¢ are Holder
conjugate exponents, then Stokes theorem yields

4" Bl| = < 100"

/da/\dFiz/\-~~/\dF“/\de:/d(a/\dFi2/\-~-/\dF“/\de)
Q Q

(9) :/ aNdF? N NdF" Ndzy =0
N

Here we have used the fact that o = 0 on 9. By (9), (10), Holder inequality and
Hadamard inequality, we have

|dE™|"¢dF A - NdF" Ndxy
Q

= /(da—i—d*ﬁ)/\dF“/\-~-/\dF“/\da:J
Q

= /d*ﬂAdFiZA-.-AdF“Ade
Q

< ||d* Bl ie |AF A - - AAFP A dag]| e
< 2 x 100" e||dF ™ |} 2 | dF = e - || dFY ||
<

21 x 100”25/ |DF|'~*dz.
Q
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Proof of Theorem. Let f € Wli’ife(Q,R")(O < € < 1/2) be a degenerate weakly
(k1, k2)-quasiregular mapping. If we set Q; = {x € Q : |[Df(z)| > 1}, Qo = {z €
Q: |Df(x)] < 1}, then Q@ = Q3 UQy, Q9 N Qs = ¢. Let 29 € Q be arbitrary.
B = B(xo,r) C B(wo, 3r) = 3B C B(wo,2r) = 2B CC 2 be concentric balls in .

Df(x)" dx = Df(x)'edx Df(x)|" cdx
/B\ f(@) /m|f<>| +/ Df(2)]

BNQa

(10)

IN

/ Df(x)|"~dz + |B|
BNy

By the definition of degenerate weakly (k1, k2 )-quasiregular mapping, we know that

[ pr@ias

BNy

[ ADs@I [l D)y + ko] do
BNy

IA

(11)

Since (Df(ac))i#E = (detAS)(ln)X(?), and detA] > 0, a.e.Q, then

IN

B ()20 /B IDF (@)~ |(Df(@))'y|dz + k| B]

1/2
(DF@)y] = [ S(detar)? | <3 deta)
1,J 1,7
So, by Hadamard inequality, we have
(12) /B [Df ()] *[(Df (2))|de < /B [Df(x)| 7= ) detAlda
1,J

=Y / |df it ()|~ cdet AL da
1,078

Here ¢; is the first index of I = (41,49, - , ;).
To estimate the right hand side of (13), we take ¢(z) € C§°(2B),¢(z) €
C§°(2B) (¢, be zero outside %, 2B) to be test functions satisfying
N0<¢<1,¢=1ifzeB,|vel <2
2)0<y<lLy=1ifreiB |yy <2
We introduce the auxiliary function F' € Wol"lfs(ﬂ, R™) to be

F= (w(fu _Cil)f" ’w(fiFl _Cil71)7¢(fil - cil)ﬂé(fJ — CJ))

Here J is the coindex of I and ¢ = (¢, c%,--- ¢, ¢’)c* k= 1,2, -+ ,n are some
constants to be determined. Let K be any ordered (n — I)-tuple. We have in %B

Pldf*|"Edf A~ - - Adf Ada g
=|dF"™|7¢dF"™ A- - -ANdF" Ndx g — (f** — )|df**|Sdf " A- - -Adf "= AdpAdx
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Applying Lemma 5 to the auxiliary function F' and notice that |f? — c%| <
|f—¢|,l=1,2,--- n, we have

'/ |df | ~Edfit A - AdfY /\de‘
B

IN

21 x 100”25/ \DF|I*€dx+/ |7 o||f —cl|DfI' 2 da
2B 2B

(13) < 2Ax100"el; + I

Firstly, we estimate I;. By the definition of F and the conditions 1) and 2), we
can easily derive the estimate

[DF| < 2(4r7|f — ¢ +|Df])

Therefore

/ |DF|'~2dx < 2!¢ [4“%5—1/ |f—c|l—8d:c+/ |Df|l_5dx]
2B 2B 2B

Take ¢ = fop = fQ g |fldz. Applying Lemma 1 to the first term in the right hand
side yields

(14) 112/ |DF|l‘5da:§21‘€(2’H‘31‘35+1)/ |Df|eda §21(2W+1)/ |Df|"d.
2B 2B 2B
Secondly, we estimate Is.

. 4 .
19 b= [ |vellf-FelDf " cde <2 [ |f = Fapl DA do

_ n(l—e) _ n(l—¢)
If we take p’ = n—z+1+a’q/ = D) (I—1—e)’

inequality yields

then 1 < p/, ¢ < o0, ﬁ+% = 1, Holder’s

/ \f = fenl|DfI" ' Cdx
2B
(nt1)(—1-2)

n—l4+lte
n(l—e) n—c) n(l—e) n(i—2)
< ([ 1r-Talta) T ([ o)
2B 2B

1"

Take p” = "T(Ll_:f%q” = n’_L(ll_:_)Fa, 1<p’<n,q¢" = an’p,,. The above inequality and
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Lemma 2 yields

/ f — Fapll DS
2B

o’ o’ 1/q" , 1/p" ., 7"’,;576
C(n) (n_p,/> (p/,_1> (/23 |DfP dg;) (/23 |Df|P dx)

I+1+te n+1

l—e¢ n(l — E) o) n(l—c) n
< D n+1
_C(n)nl+1+€(n(l5)nl> (/23 fIs dx)

o nt1

; nl ni-1) n(l—e) n
D D ntl (. .
( ) < (n)n—l—l—l(n(l_é)_n_l) (AB| f x)

Combining (14), (15), (16) with (17) yields

IN

(17) ‘/B ldfr|==df s A - AdfEA de‘
< 20 x 100" 21278 4 1)] /B |Df|'"~¢dx
2
4 1 nl e TN
+C(”)rn—z+1<n(z_;)_z—1> (/QB|Df " dm)
Take the summation for all ordered I-tuples I = (i1,--- ,4;) and all ordered (n —{)-

tuples K = (k1,- - , kn—1) yields

s Y /B df | det Al de < 3
7 7

<GP xax 0 )] [ pf e
2B

/ |df | ~Edf™ A - AdfT A de‘
B

n—1+2 n+1
4 .9 l nl n(-=1) EDRNE
+C(”)r(l)n_z+1(n(z_;)_z—1) (/QBlDfl i )

We thus arrive at

(19 [ Ipf@)ds

< BP0l x 20 x 1007 e 2127 4 1)) /23 |Df|'~*dx
n—142 il

4 l nl n(l—1) n(i—e) )
k(T 3/20 - ( > (/ D CES )
+(k2 4+ 1)|B|.
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Divided by |B| = w,r™ (wy, be the volume of the unit ball in R™) in both sides of
the above inequality yields

][ IDf (@) ~da

ki ()2/2nl/2 x 271 5 10077 e [2!(273 4 1)) ]£B|Df|l_£dx

n—42 n4l

I nl 1) n=)\ "
M3/2C (n)2mBwh/m b M)

Ha (7)) 2w, n_z+1(n(1—;)—l—1> <]£B| d

+(k2 +1)

ntl

(20) = cl<n,z,k1>s][ Df|“fdx+02(n,l,k1>0[ |Df"ff+f>) (ke t1),
2B

2B

here the values of Ci(n,l, k1), Ca(n,l, k1) are obvious.
Take g = 1/01(’(7/,[, ]61) > 0. Thus, if € < gg, then 0 < Cl(n,l,k‘l)e =60<1. In
this case, the above inequality becomes

n+1

][|Df(x)\l‘5dx§9][ |Df|l_5dx+02(n,l,k:1)(][ Df|”ff+f)> L (ke t1)
B 2B

n(l—e)
n+1
Lemma 4, there exists p’ > p, such that |Df(z)| € LZOC(Q). Suppose I = {p €
1 —¢el] : |Df(x)] € L} .(Q)}, it is obvious that ¢; € I, and we know that
I is closed by the uniform estimate of the above reverse Holder inequality. By
Lemma 4 again, we know that I is relatively open. Hence I = [l — ¢,l], that is,
|Df(x)| € L, (). The above procedure is also true for p = [, by Lemma 4, there

(©). By Sobolev Imbedding

exist p; = pl(n,l,kzl,kg) > [, such that |Df(x)| € L}
theorem, f € Wl P1(Q), R"). This completes the proof of the theorem. o

The above inequality is a reverse Holder inequality since < l—e By

loc
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