• Title/Summary/Keyword: H%2A-algebra

Search Result 105, Processing Time 0.026 seconds

MAPS PRESERVING m- ISOMETRIES ON HILBERT SPACE

  • Majidi, Alireza
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.735-741
    • /
    • 2019
  • Let ${\mathcal{H}}$ be a complex Hilbert space and ${\mathcal{B}}({\mathcal{H}})$ the algebra of all bounded linear operators on ${\mathcal{H}}$. In this paper, we prove that if ${\varphi}:{\mathcal{B}}({\mathcal{H}}){\rightarrow}{\mathcal{B}}({\mathcal{H}})$ is a unital surjective bounded linear map, which preserves m- isometries m = 1, 2 in both directions, then there are unitary operators $U,V{\in}{\mathcal{B}}({\mathcal{H}})$ such that ${\varphi}(T)=UTV$ or ${\varphi}(T)=UT^{tr}V$ for all $T{\in}{\mathcal{B}}({\mathcal{H}})$, where $T^{tr}$ is the transpose of T with respect to an arbitrary but fixed orthonormal basis of ${\mathcal{H}}$.

REPRESENTATIONS OVER GREEN ALGEBRAS OF WEAK HOPF ALGEBRAS BASED ON TAFT ALGEBRAS

  • Liufeng Cao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1687-1695
    • /
    • 2023
  • In this paper, we study the Green ring r(𝔴0n) of the weak Hopf algebra 𝔴0n based on Taft Hopf algebra Hn(q). Let R(𝔴0n) := r(𝔴0n) ⊗ ℂ be the Green algebra corresponding to the Green ring r(𝔴0n). We first determine all finite dimensional simple modules of the Green algebra R(𝔴0n), which is based on the observations of the roots of the generating relations associated with the Green ring r(𝔴0n). Then we show that the nilpotent elements in r(𝔴0n) can be written as a sum of finite dimensional indecomposable projective 𝔴0n-modules. The Jacobson radical J(r(𝔴0n)) of r(𝔴0n) is a principal ideal, and its rank equals n - 1. Furthermore, we classify all finite dimensional non-simple indecomposable R(𝔴0n)-modules. It turns out that R(𝔴0n) has n2 - n + 2 simple modules of dimension 1, and n non-simple indecomposable modules of dimension 2.

LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.237-244
    • /
    • 2018
  • Let ${\mathcal{H}}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let L be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in ${\mathcal{L}}$. Let p and q be natural numbers (p < q). Let ${\mathcal{A}}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $T_{(p,q)}=0$ for all T in ${\mathcal{A}}$. If ${\mathcal{A}}$ is a Lie ideal, then $T_{(p,p)}=T_{(p+1,p+1)}={\cdots}=T_{(q,q)}$ and $T_{(i,j)}=0$, $p{\eqslantless}i{\eqslantless}q$ and i < $j{\eqslantless}q$ for all T in ${\mathcal{A}}$.

HILBERT-SCHMIDT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Kim, Ki-Sook
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.227-233
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation AX$\sub$i/=Y$\sub$i/, for i=1,2, ‥‥, R. In this article, we investigate Hilbert-Schmidt interpolation for operators in tridiagonal algebras.

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

ON STABILITY PROBLEMS WITH SHADOWING PROPERTY AND ITS APPLICATION

  • Chu, Hahng-Yun;Han, Gil-Jun;Kang, Dong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.673-688
    • /
    • 2011
  • Let $n{\geq}2$ be an even integer. We investigate that if an odd mapping f : X ${\rightarrow}$ Y satisfies the following equation $2_{n-2}C_{\frac{n}{2}-1}rf\(\sum\limits^n_{j=1}{\frac{x_j}{r}}\)\;+\;{\sum\limits_{i_k{\in}\{0,1\} \atop {{\sum}^n_{k=1}\;i_k={\frac{n}{2}}}}\;rf\(\sum\limits^n_{i=1}(-1)^{i_k}{\frac{x_i}{r}}\)=2_{n-2}C_{{\frac{n}{2}}-1}\sum\limits^n_{i=1}f(x_i),$ then f : X ${\rightarrow}$ Y is additive, where $r{\in}R$. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spaces and in Banach modules over unital C-algebras. As an application, we show that every almost linear bijection h : A ${\rightarrow}$ B of unital $C^*$-algebras A and B is a $C^*$-algebra isomorphism when $h(\frac{2^s}{r^s}uy)=h(\frac{2^s}{r^s}u)h(y)$ for all unitaries u ${\in}$ A, all y ${\in}$ A, and s = 0, 1, 2,....

SUPERSTABILITY OF THE GENERALIZED PEXIDER TYPE EXPONENTIAL EQUATION IN ABELIAN GROUP

  • Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.213-223
    • /
    • 2012
  • In this paper, we will prove the superstability of the following generalized Pexider type exponential equation $${f(x+y)}^m=g(x)h(y)$$, where $f,g,h\;:\;G{\rightarrow}\mathbb{R}$ are unknown mappings and $m$ is a fixed positive integer. Here G is an Abelian group (G, +), and $\mathbb{R}$ the set of real numbers. Also we will extend the obtained results to the Banach algebra. The obtained results are generalizations of P. G$\check{a}$vruta's result in 1994 and G. H. Kim's results in 2011.

CLOSED IDEALS IN A SEMIFINITE, INFINITE VON NEUMANN ALGEBRA, ARISING FROM RELATIVE RANKS OF ITS ELEMENTS

  • Lee, Sa-Ge;Kim, Sang-Moon;Chi, Dong-Pyo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.107-113
    • /
    • 1984
  • Throughout the paper let A be a semifinite, infinite von Neumann algebra acting on a Hilbert space H, .alpha. an infinite cardinal. The main purpose of our work is to give several characterizations of a class of closed ideals in A, by introducing the notions of relative ranks of elements in A and the relative .alpha.-topology on H. The relative .alphi.-topology is an analogue to the .alpha.-topology that we have defined in ([7], [8]). The present work is regarded as an extension of [7], [8] and motivated by works of M. Breuer ([1], [2]), V. Kaftal ([5], [6]) and M.G. Sonis [9].

  • PDF

SELF-ADJOINT INTERPOLATION ON Ax = y IN CSL-ALGEBRA ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.503-510
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;=\;y_i,\;for\;i\;=\;1,\;2,\;\cdots,\;n$. In this paper the following is proved: Let H be a Hilbert space and L be a commutative subspace lattice on H. Let H and y be vectors in H. Let $M_x\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_ix\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;and\;M_y\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_iy\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}. Then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f in ${\overline{M_x}}^{\bot}$, AE = EA for all $E\;{\in}\;L\;and\;A^{*}\;=\;A$. (2) $sup\;\{\frac{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;<\;{\infty},\;{\overline{M_u}}\;{\subset}{\overline{M_x}}$ and < Ex, y >=< Ey, x > for all E in L.