• Title/Summary/Keyword: H$\ddot{o}$lder's inequality

Search Result 27, Processing Time 0.02 seconds

ON WEIGHTED GENERALIZATION OF OPIAL TYPE INEQUALITIES IN TWO VARIABLES

  • Budak, Huseyin;Sarikaya, Mehmet Zeki;Kashuri, Artion
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.717-737
    • /
    • 2020
  • In this paper, we establish some weighted generalization of Opial type inequalities in two independent variables for two functions. We also obtain weighted Opial type inequalities by using p-norms. Special cases of our results reduce to the inequalities in earlier study.

TIME SCALES INTEGRAL INEQUALITIES FOR SUPERQUADRATIC FUNCTIONS

  • Baric, Josipa;Bibi, Rabia;Bohner, Martin;Pecaric, Josip
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.465-477
    • /
    • 2013
  • In this paper, two different methods of proving Jensen's inequality on time scales for superquadratic functions are demonstrated. Some refinements of classical inequalities on time scales are obtained using properties of superquadratic functions and some known results for isotonic linear functionals.

A GENERALIZATION OF THE EXPONENTIAL INTEGRAL AND SOME ASSOCIATED INEQUALITIES

  • Nantomah, Kwara;Merovci, Faton;Nasiru, Suleman
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.49-59
    • /
    • 2017
  • In this paper, a generalization of the exponential integral is given. As a consequence, several inequalities involving the generalized function are derived. Among other analytical techniques, the procedure utilizes the $H{\ddot{o}}lder^{\prime}s$ and Minkowskis inequalities for integrals.

DISCRETE MULTIPLE HILBERT TYPE INEQUALITY WITH NON-HOMOGENEOUS KERNEL

  • Ban, Biserka Drascic;Pecaric, Josip;Peric, Ivan;Pogany, Tibor
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.537-546
    • /
    • 2010
  • Multiple discrete Hilbert type inequalities are established in the case of non-homogeneous kernel function by means of Laplace integral representation of associated Dirichlet series. Using newly derived integral expressions for the Mordell-Tornheim Zeta function a set of subsequent special cases, interesting by themselves, are obtained as corollaries of the main inequality.

CERTAIN GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS

  • Choi, Junesang;Set, Erhan;Tomar, Muharrem
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.601-617
    • /
    • 2017
  • We give a function associated with generalized Ostrowski type inequality and its integral representation for local fractional calculus. Then, using this function and its integral representation, we establish several inequalities of generalized Ostrowski type for twice local fractional differentiable functions. We also consider some special cases of the main results which are further applied to a concrete function to yield two interesting inequalities associated with two generalized means.

MATRIX OPERATORS ON FUNCTION-VALUED FUNCTION SPACES

  • Ong, Sing-Cheong;Rakbud, Jitti;Wootijirattikal, Titarii
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.375-415
    • /
    • 2019
  • We study spaces of continuous-function-valued functions that have the property that composition with evaluation functionals induce $weak^*$ to norm continuous maps to ${\ell}^p$ space ($p{\in}(1,\;{\infty})$). Versions of $H{\ddot{o}}lder^{\prime}s$ inequality and Riesz representation theorem are proved to hold on these spaces. We prove a version of Dixmier's theorem for spaces of function-valued matrix operators on these spaces, and an analogue of the trace formula for operators on Hilbert spaces. When the function space is taken to be the complex field, the spaces are just the ${\ell}^p$ spaces and the well-known classical theorems follow from our results.

THE CAUCHY PROBLEM FOR AN INTEGRABLE GENERALIZED CAMASSA-HOLM EQUATION WITH CUBIC NONLINEARITY

  • Liu, Bin;Zhang, Lei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.267-296
    • /
    • 2018
  • This paper studies the Cauchy problem and blow-up phenomena for a new generalized Camassa-Holm equation with cubic nonlinearity in the nonhomogeneous Besov spaces. First, by means of the Littlewood-Paley decomposition theory, we investigate the local well-posedness of the equation in $B^s_{p,r}$ with s > $max\{{\frac{1}{p}},\;{\frac{1}{2}},\;1-{\frac{1}{p}}\},\;p,\;r{\in}[0,{\infty}]$. Second, we prove that the equation is locally well-posed in $B^s_{2,r}$ with the critical index $s={\frac{1}{2}}$ by virtue of the logarithmic interpolation inequality and the Osgood's Lemma, and it is shown that the data-to-solution mapping is $H{\ddot{o}}lder$ continuous. Finally, we derive two kinds of blow-up criteria for the strong solution by using induction and the conservative property of m along the characteristics.