References
- S. Abramovich, S. Banic, M. Matic, and J. Pecaric, Jensen-Steffensen's and related inequalities for superquadratic functions, Math. Inequal. Appl. 11 (2008), no. 1, 23-41.
- S. Abramovich, J. Baric, and J. Pecaric, A variant of Jessen's inequality of Mercer's type for superquadratic functions, J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Article 62, 13 pages.
- S. Abramovich, G. Jameson, and G. Sinnamon, Inequalities for averages of convex and superquadratic functions, J. Inequal. Pure Appl. Math. 5 (2004), no. 4, Article 91, 14 pp.
- S. Abramovich, Refining Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 47(95) (2004), no. 1-2, 3-14.
- R. P. Agarwal, M. Bohner, and A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl. 4 (2001), no. 4, 535-557.
- M. Anwar, R. Bibi, M. Bohner, and J. Pecaric, Integral inequalities on time scales via the theory of isotonic linear functionals, Abstr. Appl. Anal. 2011 (2011), Art. ID 483595, 16 pp.
- S. Banic, J. Pecaric, and, S. Varosanec, Superquadratic functions and refinements of some classical inequalities, J. Korean Math. Soc. 45 (2008), no. 2, 513-525. https://doi.org/10.4134/JKMS.2008.45.2.513
- S. Banic and S. Varosanec, Functional inequalities for superquadratic functions, Int. J. Pure Appl. Math. 43 (2008), no. 4, 537-549.
- J. Baric, Superquadratic functions, PhD thesis, University of Zagreb, Zagreb, Croatia, 2007.
- M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser Boston Inc., Boston, MA, 2001.
- C. Dinu, Hermite-Hadamard inequality on time scales, J. Inequal. Appl. 2008 (2008), Art. ID 287947, 24 pp.
- S. Hilger, Ein MaBkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universitat Wurzburg, 1988.
- S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), no. 1-2, 18-56. https://doi.org/10.1007/BF03323153
- S. Hilger, Differential and difference calculus-unified!, Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996). Nonlinear Anal. 30 (1997), no. 5, 2683-2694.
- J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math. 30 (1906), no. 1, 175-193. https://doi.org/10.1007/BF02418571
- J. Pecaric, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, volume 187 of Mathematics in Science and Engineering, Academic Press Inc., Boston, MA, 1992.
Cited by
- Time scale Hardy-type inequalities with ‘broken’ exponent p vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-014-0533-z
- ON REFINEMENTS OF HÖLDER'S INEQUALITY II vol.32, pp.1, 2016, https://doi.org/10.7858/eamj.2016.003