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THE CAUCHY PROBLEM FOR AN INTEGRABLE

GENERALIZED CAMASSA-HOLM EQUATION

WITH CUBIC NONLINEARITY

Bin Liu and Lei Zhang

Abstract. This paper studies the Cauchy problem and blow-up phenom-
ena for a new generalized Camassa-Holm equation with cubic nonlinearity

in the nonhomogeneous Besov spaces. First, by means of the Littlewood-

Paley decomposition theory, we investigate the local well-posedness of
the equation in Bs

p,r with s > max{ 1
p
, 1
2
, 1 − 1

p
}, p, r ∈ [0,∞]. Second,

we prove that the equation is locally well-posed in Bs
2,r with the critical

index s = 1
2

by virtue of the logarithmic interpolation inequality and the

Osgood’s Lemma, and it is shown that the data-to-solution mapping is

Hölder continuous. Finally, we derive two kinds of blow-up criteria for
the strong solution by using induction and the conservative property of

m along the characteristics.

1. Introduction

In this paper, we consider the Cauchy problem and blow-up phenomena for
the following generalized Camassa-Holm equation with cubic nonlinearity:
(1.1)

(1− ∂2x)ut = u2xuxxx + uxu
2
xx + 2uuxuxxx + uu2xx + u2xuxx

+ u2uxxx − u3x − u2uxx − 3uu2x − 2u2ux, x ∈ R, t ≥ 0,

u(x, 0) = u0(x), x ∈ R.

The Equ. (1.1) was recently proposed by Novikov in [38], in which it is shown
that the higher symmetries of this equation are quasi-local and the first one
reads

(1 +Dx)uτ = m−7(mmxx − 3m2
x − 2mmx), m = u− uxx.
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Denoting m = u − uxx, one can transform the Equ. (1.1) into the equivalent
form:
(1.2)

mt = − u2xmx − 2muux +m2ux

− 2uuxmx +mu(m− u)−mu2x − u2mx, x ∈ R, t ≥ 0,

m(x, 0) = m0(x), x ∈ R.

In [38], the author proved that the Equ. (1.2) possesses an infinite hierarchy of
local higher symmetries in m, and the first such symmetry is given by

mτ = (1−Dx)m−7(mmxx − 3m2
x − 2mmx), m = u− uxx.

It is worth pointing out that the Equ. (1.2) is a cubic integrable equation,
which is a special case of the integrable non-evolutionary partial differential
equations of the form

(1−D2
x)ut = F (u, ux, uxx, uxxx, . . .), u = u(x, t), Dx =

∂

∂x
,(1.3)

where F is some function of u and its derivatives with respect to x (see Novikov
[38] for more details). The Equ. (1.3) contains another two integrable equations
with cubic nonlinearity, which have attracted much attention in the past few
years.

The first one is the following Novikov equation:

mt + u2mx + 3uuxm = 0, m = u− uxx.(1.4)

After its derivation, many papers were devoted to the studying of the Novikov
equation. For instance, Himonas and Holliman considered the Cauchy problem
of (1.4) in Sobolev space Hs(R)(s > 3

2 ) on both R and T = R/2πZ [25]. In
[22], Grayshan investigated the non-periodic and periodic Cauchy problems for
equation (1.4) in Hs(R) with s < 3

2 . With some sign condition on the ini-
tial data, Lai etc. established the existence of global weak solution for Novikov
equation in the Sobolev space Hs(R) for 1 ≤ s ≤ 3

2 [32]. However, without sign
condition on the initial data, Lai also obtained the existence of global weak so-
lutions for the Novikov equation in the space C([0,∞);R)∩L∞([0,∞);H1(R))
[31]. In [37], Ni and Zhou proved the locally well-posedness for the Novikov

equation in the critical Besov spaces B
3
2
2,1, and they also studied the well-

posedness in Hs(s > 3
2 ) by using the Kato’s semigroup theory. For s ≥ 3, it is

shown that the orbit invariants can be applied to investigate the existence of
periodic global strong solution [41]. In [33], Lenells and Wunsch proved that
the weakly dissipative versions of the Novikov equation are equivalent to their
non-dissipative counterparts up to a simple change of variables. For the other
works about Equ. (1.4), see [29,36,44–46] and the references therein.

The second one is the cubic Fokas-Olver-Rosenau-Qiao (FORQ) equation:

mt + (u2 − u2x)mx + 2uxm
2 = 0, m = u− uxx.(1.5)
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The Equ. (1.5) was introduced by Fuchssteiner [21] and Olver and Rosenau [39]
as a new generalization of integrable system by implemention a simple explicit
algorithm based on the bi-Hamiltonian representation of the classical integrable
system. The FORQ equation possesses the Lax pair, and it is shown that the
Cauchy problem can be solved by the inverse scattering transform method. In
[23], Gui etc. proved that the FORQ equation admits single peakons in the form

of u(x, t) =
√

3c
2 e
−|x−ct|(c > 0). Moreover, it is shown in [20] that the FORQ

equation does not have any nontrivial smooth traveling wave solutions. Being
inspired by the approach developed in [14], the authors also established the
local well-posedness of the FORQ equation in Bsp,r(R) with s > max{ 52 , 2 + 1

p}
and p, r ∈ [1,∞] [20]. And the well-posedness in the Besov space Bs2,1(R) with

the critical index s = 5
2 is investigated [20]. In [26], Himonas and Mantzavinos

studied the well-posedness of (1.5) in Hs(R)(s > 5
2 ), and they proved that the

solution mapping is continuous but not uniformly continuous. For more papers
concerning the FORQ equation, we refer the readers to [27,47,48].

The most celebrated integrable member of Equ. (1.3) is the Camassa-Holm
(CH) equation which has quadratic nonlinearity:

mt + umx + 2uxm = 0, m = u− uxx.(1.6)

It was originally derived by Camassa and Holm [4] to describe the undirec-
tional propagation of shallow water waves over a flat bottom. It possesses
a bi-Hamilton structure and has infinite conservation laws [4, 8]. One of the
most interesting properties of the CH equation is that it has peakon solutions
ce−|x−ct| for c > 0, which describes an fundamental characteristic of the trav-
eling waves of largest amplitude [13]. The local well-posedness and blow-up
phenomena of the CH equation in the Sobolev and the Besov spaces are in-
vestigated in [7, 9–11, 14, 40]. For the global existence of the weak and strong
solutions, we refer the readers to [7, 9, 10, 12, 42]. For the global conservative
and dissipative solutions to the CH equation, see for example [2, 3, 28].

One of the closest relatives of Equ. (1.6) is the Degasperis-Procesi (DP)
equation [17]:

ut − uxxt = 4uux − 3uxuxx − uuxxx.(1.7)

The DP equation is similar to the CH equation in several aspects, such as
the asymptotic accuracy, the completely integrability and the bi-Hamiltonian
structure [16]. However, the two equations are truly different. One of the
novel features of the DP equation is that it not only has peakon solutions [16]
and periodic peakon solutions [43], but also the periodic shock waves [19] and
shock peakons [35]. For the other works, see for example [6, 18, 24, 34, 49] and
the references therein.

To our best knowledge, the Cauchy problem and blow-up phenomena for
the Equ. (1.1) (or (1.2)) has not been studied yet. In this paper, by using the
Littlewood-Paley theory, we first establish the local existence and uniqueness
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of the solution in Bsp,r with s > max{ 1p ,
1
2 , 1 −

1
p}, p, r ∈ [0,∞]. Second, we

investigate the local well-posedness in Bs2,r with the critical index s = 1
2 . Un-

fortunately, compared with the noncritical case, it seems impossible to find any

convergence subsequence of the approximation solutions in C([0, T ];B
1
2
2,1(R))

directly, because the priori estimates in noncritical case depend strongly on
the inequality ‖fg‖Bsp,r ≤ C‖f‖Bsp,r‖g‖Bs+1

p,r
, which does not hold any more for

s = − 1
2 , p = 2 and r = 1. However, by taking advantage of a new Moser-type

interpolation inequality (see Lemma 2.8 below), we can overcome this problem

caused by the low regularity of B
− 1

2
2,1 (R), and then prove the convergence of

approximation solutions in C([0, T ];B
− 1

2
2,∞(R)) with the help of the logarithmic

interpolation inequality and the Osgood’s Lemma. Moreover, we show that the
solution mapping is Hölder continuous. Finally, we give two blow-up criteria
for the strong solutions by using induction and the method of characteristics.

The paper is organized as follows. In Section 2, we recall some facts on the
Littwood-Paley theory and the transport theory in Besov spaces. Section 3 is
devoted to the local well-posedness of the Equ. (1.1) in the Besov spaces. In
Section 4, we derive two kinds of blow-up criteria for the strong solution by
using mathematical induction and the characteristics method.

Notation. All function spaces are considered in R, and we shall drop them in
our notation if there is no ambiguity. We denote by C the estimates that hold
up to some universal constant which may change from line to line but whose
meaning is clear throughout the context.

2. Preliminaries.

Unless otherwise specified, all the results presented in this section have been
proved in [1, 5, 15]. Fix a function ψ(x) ∈ C∞0 (B4/3) with B4/3 = {x ∈ R; |x| ≤
4
3} and a function ϕ(x) ∈ C∞0 (C) with C = {x ∈ R; 3

4 ≤ |x| ≤
8
3} such that

ψ(x) +
∑
j≥0

ϕ(2−jx) = 1, ∀x ∈ R,

|i− j| ≥ 2 =⇒ supp ϕ(2−j ·) ∩ supp ϕ(2−i·) = ∅,
j ≥ 1 =⇒ supp ψ(·) ∩ supp ϕ(2−j ·) = ∅.

The nonhomogeneous Littlewood-Paley decomposition operators {∆q}q≥−1 are
defined by

∆qu = 0, if q < −1; ∆−1u , ψ(D)u; ∆qu , ϕ(2−qD)u, if q ≥ 0,

where f(D) stands for the pseudo-differential operator u→ F−1(fFu). Since

ϕ(ξ) = ψ( ξ2 ) − ψ(ξ), we also introduce the following low frequency cut-off
operator Sq:

Squ , ϕ(2−qD)u =
∑

1≤p≤q−1

∆pu.
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Definition 2.1. Let 1 ≤ p, r ≤ ∞, s ∈ R, the 1-D nonhomogeneous Besov
space Bsp,r is defined by

Bsp,r , {u ∈ S ′; ‖u‖Bsp,r =

(∑
j∈N

2rsj‖∆ju‖rLp
) 1
r

<∞}.

If r =∞, B∞p,r ,
⋂
s>0B

s
p,r.

Lemma 2.2. Let C be an annulus and B a ball, there exists a constant C > 0
such that for ∀k ∈ N+, u ∈ Lp and (p, q) ∈ [1,∞]2 with q ≥ p ≥ 1, the following
estimates hold:

Supp û ⊆ λB ⇒ ‖Dku‖Lq , sup
|α|≤k

‖∂αu‖Lq ≤ Ck+1λk+d(
1
p−

1
q )‖u‖Lp ,

Supp û ⊆ λC ⇒ C−k−1λk‖u‖Lp ≤ ‖Dku‖Lp ≤ Ck+1λk‖u‖Lp .

Definition 2.3. Let u and v be two temperate distributions. The nonhomo-
geneous paraproduct of v by u is defined by

Tuv ,
∑
j

Sj−1u∆jv.

The nonhomogeneous remainder of u and v is defined by

R(u, v) ,
∑
|k−j|≤1

∆ku∆jv.

The Bony decomposition of uv is given by

uv , Tuv + Tvu+R(u, v).

Lemma 2.4. For any (s, t) ∈ R× (−∞, 0) and any (p, r1, r2) ∈ [1,∞]3, there
exists a positive constant C such that, for r = min{1, 1

r1
+ 1

r2
}, the following

estimates hold:

‖Tuv‖Bsp,r ≤ C‖u‖L∞‖D
kv‖Bs−kp,r

,

‖Tuv‖Bs+tp,r
≤ C‖u‖Bt∞,r1 ‖D

kv‖Bs−kp,r2
.

Lemma 2.5. Let (s1, s2) ∈ R2 and (p1, p2, r1, r2) ∈ [1,∞]4. Assume that

1

p
=

1

p1
+

1

p2
,

1

r
=

1

r1
+

1

r2
.

Then there exists a constant C > 0 such that the following estimates hold:
(1) If s1 + s2 > 0, for any (u, v) in Bs2p1,r1 ×B

s2
p2,r2 , we have

‖R(u, v)‖
B
s1+s2
p,r

≤ C‖u‖Bs1p,r‖v‖Bs2p,r .

(2) If r = 1 and s1 + s2 = 0, for any (u, v) in Bs2p1,r1 ×B
s2
p2,r2 , we have

‖R(u, v)‖B0
p,∞
≤ C‖u‖Bs1p,r‖v‖Bs2p,r .
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Lemma 2.6. Let s ∈ R, 1 ≤ p, r, p1, ri ≤ ∞, i = 1, 2. Then
(1) Algebraic properties: if s > 0, Bsp,r

⋂
L∞ is an algebra. Furthermore,

Bsp,r is an algebra provided that s > 1/p or s = 1/p and r = 1.

(2) Embedding: If p1 ≤ p2 and r1 ≤ r2, then Bsp1,r1 ↪→ B
s−(1/p1−1/p2)
p2,r2 . If

s1 < s2, the embedding Bs2p,r2 ↪→ Bs1p,r1 is locally compact.
(3) Fatou’s lemma: if {un}n∈N+ is bounded in Bsp,r and un → u in S ′, then

u ∈ Bsp,r and

‖u‖Bsp,r ≤ lim inf
n→∞

‖un‖Bsp,r .

(4) If s1 ≤ 1
p < s2 (s2 ≥ 1

p if r = 1) and s1 + s2 > 0, then we have

‖uv‖Bs1p,r ≤ C‖u‖Bs1p,r‖v‖Bs2p,r .

(5) A smooth function f : Rd → R is said to be an Sm-multiplier: if ∀α ∈ Nn,
there exists a constant Cα > 0 such that |∂αf(ξ)| ≤ Cα(1 + |ξ|)m−|α| for all
ξ ∈ Rd. The operator f(D) is continuous from Bsp,r to Bs−mp,r for all s ∈ R and
1 ≤ p, r ≤ ∞.

Lemma 2.7. (1) Let s2 > s1, θ ∈ (0, 1), we have

‖u‖
B
θs1+(1−θ)s2
p,1

≤ C

s2 − s1

(
1

θ
+

1

1− θ

)
‖u‖θ

B
s1
p,∞
‖u‖1−θ

B
s2
p,∞

.

(2) For ∀s ∈ R, ε > 0 and 1 ≤ p ≤ ∞, there exists a constant C > 0 such
that

‖u‖Bsp,1 ≤ C
ε+ 1

ε
‖u‖Bsp,∞

(
1 + log

‖u‖Bs+εp,∞

‖u‖Bsp,∞

)
.

Lemma 2.8. For any f ∈ B−
1
2

2,∞ and g ∈ B
1
2
2,∞ ∩ L∞, there exists a constant

C > 0 such that

‖fg‖
B
− 1

2
2,∞

≤ C‖f‖
B
− 1

2
2,∞

‖g‖
B

1
2
2,∞∩L∞

.

Lemma 2.9. Let 1 ≤ p, r ≤ ∞, s ≥ −min( 1
p , 1−

1
p ), and consider the following

transport equation:

∂tf + v∂xf = g, f(x, 0) = f0(x).(2.1)

Assume that f0 ∈ Bsp,r and g ∈ L1([0, T ];Bsp,r). For any solution

f ∈ L∞([0, T ];Bsp,r)

of (2.1) with vx ∈ L1([0, T ];Bs−1p,r ) if s > 1 + 1
p or vx ∈ L1([0, T ];B

1
p
p,r
⋂
L∞)

otherwise.
(1) If r = 1 or s 6= 1 + 1

p , there exists C > 0 depending only on s, p and r

such that

‖f‖Bsp,r ≤ exp{CVp(t)}‖f0‖Bsp,r+

∫ t

0

exp{CVp(t)−CVp(s)}‖g(s)‖Bsp,rds,(2.2)
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with

Vp(t) ,


∫ t
0
‖vx(s)‖

B
1
p
p,∞

⋂
L∞

ds, if s < 1 + 1
p ;∫ t

0
‖vx(s)‖Bs−1

p,r
ds, if s > 1 + 1

p or s = 1 + 1
p , r = 1.

(2) If r < ∞, then f ∈ C([0, T ];Bsp,r). If r = ∞, then f ∈ C([0, T ];Bs
′

p,1)
for all s′ < s.

(3) If v = f and s > 0, the inequality (2.2) holds true with Vp(t) :=∫ t
0
‖vx(s)‖L∞ds.

Lemma 2.10. Let p, r, s, f0 and g be as in Lemma 2.9. Suppose that v ∈
Lρ([0, T ];B−M∞,∞) for some ρ > 1, M > 0 and vx ∈ L1([0, T ];Bs−1p,r ) if s > 1 + 1

p

or s = 1 + 1
p and r = 1, and vx ∈ L1([0, T ];B

1
p
p,∞

⋂
L∞) if s < 1 + 1

p . Then the

transport equation (2.1) admits a unique solution u in the space C([0, T ];Bsp,r)

if r < ∞ or L∞([0, T ];Bsp,r)
⋂

(
⋂
s′<s C([0, T ];Bs

′

p,1) if r < ∞. Moreover, the
inequalities of Lemma 2.9 hold true.

Lemma 2.11. Let ρ ≥ 0 be a measurable function, γ > 0 be a locally integrable
function and µ be a continuous and increasing function. For some a ≥ 0, if

ρ(t) ≤ a+

∫ t

t0

γ(s)µ(ρ(s))ds.

(1) If a > 0, then −M(ρ(t)) +M(a) ≤
∫ t
t0
γ(s)ds, where M(x) ,

∫ 1

x
1

µ(r)dr.

(2) If a = 0 and µ satisfies the condition
∫ 1

0
dr
µ(r)dr = +∞, then ρ ≡ 0.

3. Local well-posedness in the Besov spaces

In this section, we shall investigate the local well-posedness of the initial
value problem (1.2) in the nonhomogeneous Besov spaces.

3.1. Local well-posedness in Bsp,r with s > max{ 1p ,
1
2 , 1−

1
p}, p, r ∈ [1,∞].

Noting that the Equ. (1.2) can be reformulated in the form of{
mt + (u+ ux)2mx = m2(u+ ux)−m(u+ ux)2, x ∈ R, t ≥ 0,

m(x, 0) = m0(x), x ∈ R,
(3.1)

where m = u − uxx is the momentum variable in the physical sense. To give
the main result in this subsection, we introduce the following spaces for conve-
nience.

Definition 3.1. For ∀T > 0, s ∈ R and 1 ≤ p ≤ +∞, we set

Esp,r(T ) ,

{
C([0, T ];Bsp,r) ∩ C1([0, T ];Bs−1p,r ), if r <∞,
L∞([0, T ];Bsp,∞) ∩ Lip([0, T ];Bs−1p,∞), if r =∞,

and Esp,r =
⋂
T>0E

s
p,r(T ).
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The uniqueness and existence of the solution is ensured by the following
theorem.

Theorem 3.2. Let m0 ∈ Bsp,r be the initial data, where s > max{ 1p ,
1
2 , 1−

1
p},

p, r ∈ [1,∞]. Then there exists a time T , T (‖m0‖Bsp,r ) > 0 such that the

Equ. (3.1) admits a unique solution m ∈ Esp,r(T ). Moreover, the solution map-

ping m0 7→ m is continuous from Bsp,r into C([0, T ];Bs
′

p,r) ∩ C1([0, T ];Bs
′−1
p,r )

for all s′ < s if r =∞, and s′ = s if 1 ≤ r <∞.

By using the Littlewood-Paley decomposition and the Plancherel’s formula,
the Besov space Bs2,2 is equivalent to the Sobolev spaces Hs. Therefore, The-
orem 3.2 implies the following result.

Corollary 3.3. Let m0 ∈ Hs with s > 1
2 , there exists a T , T (‖m0‖Hs) > 0

such that the Equ. (3.1) admits a unique solution

m ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1).

Moreover, the solution mapping m0 → m is continuous.

The uniqueness and continuity with respect to the initial data in some sense
can be obtained by the following priori estimates.

Lemma 3.4. Assume that s > max{ 1p ,
1
2 , 1 −

1
p} with p, r ∈ [1,∞]. Let

m(1),m(2) ∈ L∞([0, T ];Bsp,r) ∩ C([0, T ];S ′) be two solutions to the Equ. (3.1)

with respect to the initial datum m
(1)
0 ,m

(2)
0 ∈ Bsp,r, respectively. Denoting

m(12) , m(1) −m(2) and m
(12)
0 , m(1)(0)−m(2)(0),

then for ∀t ∈ [0, T ], the following priori estimates hold:
(1) If s > max{1− 1

p ,
1
p ,

1
2} but s 6= 2 + 1

p , we have

‖m(12)(t)‖Bs−1
p,r
≤ ‖m(12)

0 ‖Bs−1
p,r

exp

{
C

∫ t

0

(‖m(2)(s)‖2Bsp,r + ‖m(1)(s)‖2Bsp,r )ds
}
.

(3.2)

(2) If s = 2 + 1
p , for any θ ∈ (0, 1), we have

‖m(12)‖
B

1+ 1
p

p,r

≤ C‖m(12)
0 ‖θ

B
1+ 1

p
p,r

(‖m(1)‖1−θ
B

2+ 1
p

p,r

+ ‖m(2)‖1−θ
B

2+ 1
p

p,r

)

× exp

{
Cθ

∫ t

0

(‖m(2)(s)‖2
B

2+ 1
p

p,r

+ ‖m(1)(s)‖2
B

2+ 1
p

p,r

)ds

}
.(3.3)

Proof. Obviously, the function m(12)(x, t) satisfies the following transport equa-
tion: {

m
(12)
t + (u(1) + u

(1)
x )2m

(12)
x = F (12)(x, t),

m(12)(x, 0) = m
(12)
0 (x) , m(1)

0 −m
(2)
0 ,

(3.4)
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where F (12)(x, t) = [(u(2)+u
(2)
x )2−(u(1)+u

(1)
x )2]m

(2)
x +m(12)(m(1)+m(2))(u(1)+

u
(1)
x ) + (m(2))2(u(12) + u

(12)
x ) −m(12)(u(2) + u

(2)
x )2 −m(1)(u(2) + u

(2)
x + u(1) +

u
(1)
x )(u(12) + u

(12)
x ).

For s > max{ 1p ,
1
2 , 1−

1
p} but s 6= 2 + 1

p , by applying Lemma 2.9 to the first

equation of (3.1), we deduce that

‖m(12)(t)‖Bs−1
p,r
≤ ‖m(12)

0 ‖Bs−1
p,r

+

∫ t

0

‖F (12)(·, t)‖Bs−1
p,r

ds(3.5)

+ C

∫ t

0

V ′p(s)‖m(12)(s)‖Bs−1
p,r

ds,

where

Vp(t) ,
∫ t

0

(‖∂x(u(1) + u(1)x )2‖
B

1
p
p,r∩L∞

+ ‖∂x(u(1) + u(1)x )2‖Bs−2
p,r

)dτ.

Noting that (1 − ∂2x)−1 is a multiplier of degree −2, it follows from the (5) of
Lemma 2.6 that

C1‖u(i)‖Bs+2
p,r
. ‖m(i)‖Bsp,r . C2‖u(i)‖Bs+2

p,r
, for ∀s ∈ R, i = 12, 1, 2,(3.6)

where C1 and C2 are positive constants independent of the index i.
Since s > max{1− 1

p ,
1
p ,

1
2}, the Besov space Bsp,r is a Banach algebra, so we

have

V ′p(t) = ‖∂x(u(1) + u(1)x )2‖
B

1
p
p,r∩L∞

+ ‖∂x(u(1) + u(1)x )2‖Bs−2
p,r

≤ C‖∂x(u(1) + u(1)x )2‖Bsp,r + ‖(u(1) + u(1)x )2‖Bsp,r
≤ C(‖u(1)‖Bs+1

p,r
+ ‖u(1)x ‖Bs+1

p,r
)2 ≤ C‖m(1)‖2Bsp,r .(3.7)

Next, let us estimate the term ‖F (12)(·, t)‖Bs−1
p,r

in (3.5). If max{ 1p ,
1
2} < s ≤

1 + 1
p , it is obvious that s − 1 ≤ 1

p ≤ s and (s − 1) + s > 0, by using the

interpolation inequality ((4) of Lemma 2.6) and the fact that Bsp,r is a Banach
algebra, we have

‖[(u(2) + u(2)x )2 − (u(1) + u(1)x )2]m(2)
x ‖Bs−1

p,r
(3.8)

≤ C‖(u(2) + u(2)x + u(1) + u(1)x )(u(12) + u(12)x )‖Bsp,r‖m
(2)
x ‖Bs−1

p,r

≤ C‖u(2) + u(2)x + u(1) + u(1)x ‖Bsp,r‖u
(12) + u(12)x ‖Bsp,r‖m

(2)‖Bsp,r
≤ C(‖m(1)‖Bsp,r + ‖m(2)‖Bsp,r )‖m

(2)‖Bsp,r‖u
(12)‖Bs+1

p,r

≤ C(‖m(1)‖2Bsp,r + ‖m(2)‖2Bsp,r )‖m
(12)‖Bs−1

p,r
.

By taking the similar argument, we can also estimate that

‖m(12)(m(1) +m(2))(u(1) + u(1)x )‖Bs−1
p,r

(3.9)

≤ C‖m(12)‖Bs−1
p,r
‖(m(1) +m(2))(u(1) + u(1)x )‖Bsp,r
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≤ C‖m(12)‖Bs−1
p,r

(‖m(1)‖Bsp,r + ‖m(2)‖Bsp,r )(‖u
(1)‖Bsp,r + ‖u(1)‖Bs+1

p,r
)

≤ C‖m(12)‖Bs−1
p,r

(‖m(1)‖2Bsp,r + ‖m(2)‖2Bsp,r ),

‖(m(2))2(u(12) + u(12)x )−m(12)(u(2) + u(2)x )2‖Bs−1
p,r

(3.10)

≤ C(‖m(2)‖2Bsp,r‖u
(12)+u(12)x ‖Bs−1

p,r
+‖m(12)‖Bs−1

p,r
‖(u(2)+u(2)x )2‖Bs−1

p,r
)

≤ C(‖m(2)‖2Bsp,r‖u
(12)‖Bsp,r + ‖m(12)‖Bs−1

p,r
‖u(2) + u(2)x ‖2Bsp,r )

≤ C‖m(12)‖Bs−1
p,r
‖m(2)‖2Bsp,r ,

‖m(1)(u(2) + u(2)x + u(1) + u(1)x )(u(12) + u(12)x )‖Bs−1
p,r

(3.11)

≤ C‖m(1)(u(2) + u(2)x + u(1) + u(1)x )‖Bsp,r‖u
(12) + u(12)x ‖Bs−1

p,r

≤ C‖m(1)‖Bsp,r (‖u
(2)‖Bs+1

p,r
+ ‖u(1)‖Bs+1

p,r
)‖u(12)‖Bs+1

p,r

≤ C‖m(12)‖Bs−1
p,r

(‖m(2)‖2Bsp,r + ‖m(1)‖2Bsp,r ).

Putting the estimates (3.8)-(3.11) together, we obtain

‖F (12)(·, t)‖Bs−1
p,r
≤ C(‖m(2)‖2Bsp,r + ‖m(1)‖2Bsp,r )‖m

(12)‖Bs−1
p,r

.(3.12)

Therefore, it follows from (3.5), (3.7) and (3.12) that

‖m(12)(t)‖Bs−1
p,r
≤ ‖m(12)

0 ‖Bs−1
p,r

+ C

∫ t

0

‖m(12)(τ)‖Bs−1
p,r

(‖m(2)‖2Bsp,r + ‖m(1)‖2Bsp,r )dτ

+ C

∫ t

0

‖m(1)‖2Bsp,r‖m
(12)(τ)‖Bs−1

p,r
dτ

≤ ‖m(12)
0 ‖Bs−1

p,r

+ C

∫ t

0

‖m(12)(τ)‖Bs−1
p,r

(‖m(2)‖2Bsp,r + ‖m(1)‖2Bsp,r )dτ.

By applying the Gronwall inequality, we get

‖m(12)(t)‖Bs−1
p,r
≤ ‖m(12)

0 ‖Bs−1
p,r

exp

{
C

∫ t

0

(‖m(2)(τ)‖2Bsp,r + ‖m(1)(τ)‖2Bsp,r )dτ
}
.

(3.13)

On the other hand, for s > 1 + 1
p but s 6= 2 + 1

p , the Besov space Bs−1p,r

is a Banach algebra, by virtue of the property of (3.6), it is easier to obtain
the desired inequality (3.2), and we shall omit the details here. Hence we have
proved (1).

To deal with the criteria case s = 2 + 1
p , we use the interpolation method.

Indeed, by choosing θ = 1
2 (1 − 1

2p ) ∈ (0, 1), it is clear that s − 1 = 1 + 1
p =

1
2pθ + (2 + 1

2p )(1− θ). By utilizing the interpolation inequality ((4) of Lemma
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2.6), we deduce that

‖m(12)‖Bs−1
p,r
≤ C‖m(12)‖θ

B
1
2p
p,r

‖m(12)‖1−θ
B

2+ 1
2p

p,r

≤ C‖m(12)
0 ‖θ

B
1
2p
p,r

exp

{
Cθ

∫ t

0

(‖m(2)(τ)‖2
B

1+ 1
2p

p,r

+ ‖m(1)(τ)‖2
B

1+ 1
2p

p,r

)dτ

}
‖m(12)‖1−θ

B
2+ 1

2p
p,r

≤ C‖m(12)
0 ‖θ

B
1
2p
p,r

exp

{
Cθ

∫ t

0

(‖m(2)(τ)‖2
B

1+ 1
2p

p,r

+ ‖m(1)(τ)‖2
B

1+ 1
2p

p,r

)dτ

}
× (‖m(1)‖1−θ

B
2+ 1

2p
p,r

+ ‖m(2)‖1−θ
B

2+ 1
2p

p,r

)

≤ C‖m(12)
0 ‖θ

Bs−1
p,r

(‖m(1)‖1−θBsp,r
+ ‖m(2)‖1−θBsp,r

)

× exp

{
Cθ

∫ t

0

(‖m(2)(τ)‖2Bsp,r + ‖m(1)(τ)‖2Bsp,r )dτ
}
.(3.14)

This completes the proof of Lemma 3.4. �

Next, we shall construct the approximation solution to the Equ. (3.1) by
means of the classical Friedrich’s regularization method.

Lemma 3.5. Let p, r be the same as in the statement Lemma 3.4. Let s >
max{ 1p ,

1
2 , 1 −

1
p} and m0 ∈ Bsp,r be the initial data. Assume that m(0) = 0,

then
(1) there exists a sequence of smooth functions {m(n)}n∈N+ ∈ C([0,∞);B∞p,r)

which solves the following linear transport equation:

{
m

(n+1)
t +(u(n)+u

(n)
x )2m

(n+1)
x =(m(n))2(u(n)+u

(n)
x )−m(n)(u(n)+u

(n)
x )2,

m(n+1)(x, 0) = m
(n+1)
0 (x) , Sn+1m0,

(3.15)

where Sn+1 is the low frequency cut-off of m0 given by Sn+1m0 =
∑
q≥−1 ∆qm0.

(2) there exists a T , T (‖m0‖Bsp,r ) > 0 such that the sequence {m(n)}n∈N+

is uniformly bounded in Esp,r(T ), and it is also a Cauchy sequence in

C([0, T ];Bs−1p,r )

and converges to some function m ∈ C([0, T ];Bs−1p,r ).

Proof. Noting that Sn+1m0 ∈ B∞p,r ,
⋂
s∈RB

s
p,r, by virtue of Lemma 2.10 and

induction with respect to the index n, we deduce that the Equ. (3.15) admits
a unique global solution m(n+1) ∈ C([0, T ];B∞p,r) for any T > 0. It remains to
prove (2).

To this end, let us first show that the sequence {m(n)}n∈N+ is uniformly
bounded in C([0, T ];Bsp,r) for some T > 0 which depends on the initial data.
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By applying Lemma 2.9 to (3.15), we get

‖m(n+1)(t)‖Bsp,r ≤ exp{CV (t)}‖Sn+1m0‖Bsp,r +

∫ t

0

exp{CV (t)− CV (τ)}

×
(
‖(m(n))2(u(n)+u(n)x )‖Bsp,r+‖m(n)(u(n)+u(n)x )2‖Bsp,r

)
dτ,(3.16)

where the V (t) is defined as follows

V (t) ,
∫ t

0

(‖∂x(u(n) + u(n)x )2‖Bs−1
p,r

+ ‖∂x(u(n) + u(n)x )2‖
B

1
p
p,r∩L∞

)dτ

≤ C
∫ t

0

‖u(n) + u(n)x ‖2Bsp,rdτ ≤ C
∫ t

0

‖m(n)(τ)‖2Bsp,rdτ.(3.17)

Since s > max{ 1p ,
1
2 , 1−

1
p}, the Besov space Bsp,r is a Banach algebra, we can

estimate that

‖(m(n))2(u(n) + u(n)x )‖Bsp,r + ‖m(n)(u(n) + u(n)x )2‖Bsp,r
≤ C‖m(n)‖2Bsp,r‖u

(n) + u(n)x ‖Bsp,r + C‖m(n)‖Bsp,r‖u
(n) + u(n)x ‖2Bsp,r

≤ C‖m(n)‖2Bsp,r (‖u
(n)‖Bsp,r + ‖u(n)‖Bs+1

p,r
)

+ C‖m(n)‖Bsp,r (‖u
(n)‖2Bsp,r + ‖u(n)x ‖2Bsp,r )

≤ C‖m(n)‖3Bsp,r + C‖m(n)‖Bsp,r (‖m
(n)‖2

Bs−2
p,r

+ ‖m(n)‖2
Bs−1
p,r

)

≤ C‖m(n)‖3Bsp,r .(3.18)

Plugging the estimates (3.17)-(3.18) into (3.16), we obtain

‖m(n+1)(t)‖Bsp,r ≤ C

(
exp{CV (t)}‖m0‖Bsp,r

+

∫ t

0

exp{CV (t)− CV (τ)}‖m(n)(τ)‖3Bsp,rdτ
)

≤ C

(
exp

{
C

∫ t

0

‖m(n)(τ)‖2Bsp,rdτ
}
‖m0‖Bsp,r

+

∫ t

0

exp

{
C

∫ t

τ

‖m(n)(τ ′)‖2Bsp,rdτ
′
}
‖m(n)(τ)‖3Bsp,rdτ

)
.(3.19)

Here we have used the fact that ‖Sn+1m0‖Bsp,r ≤ C‖m0‖Bsp,r , where the positive
constant C is independent of the index n.

If ‖m(n)‖Bsp,r < 1, it follows from (3.19) that ‖m(n+1)‖Bsp,r < C(‖m0‖Bsp,r +

t), which implies that the sequence {m(n)}n∈N+ is uniformly bounded. On the
other hand, if ‖m(n)‖Bsp,r ≥ 1, let us fix a T > 0 such that 4TC3‖m0‖2Bsp,r < 1,

and

‖m(n)(t)‖Bsp,r ≤
C‖m0‖Bsp,r√

1− 4C3‖m0‖2Bsp,r t
(3.20)
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≤
C‖m0‖Bsp,r√

1− 4C3‖m0‖2Bsp,rT
, H for ∀t ∈ [0, T ].

In view of the definition of V (t), we can deduce from (3.20) that

exp{CV (t)− CV (τ)} = exp

{
C

∫ t

τ

‖m(n)(τ ′)‖2Bsp,rdτ
′
}

≤ exp

{∫ t

τ

C3‖m0‖2Bsp,r
1− 4C3‖m0‖2Bsp,r t

dτ ′
}

= 4

√√√√1− 4C3‖m0‖2Bsp,rτ
1− 4C3‖m0‖2Bsp,r t

.(3.21)

Especially, by taking τ = 0, we have

exp{CV (t)} ≤ 1

4

√
1− 4C3‖m0‖2Bsp,r t

for ∀t ∈ [0, T ].(3.22)

By (3.20)-(3.22), the inequality (3.19) is equivalent to

‖m(n+1)(t)‖Bsp,r

≤ C

( ‖m0‖Bsp,r
4

√
1− 4C3‖m0‖2Bsp,r t

+

∫ t

0

4

√
1− 4C3‖m0‖Bsp,rτ
1− 4C3‖m0‖Bsp,r t

‖m(n)(τ)‖3Bsp,rdτ
)

≤ C

( ‖m0‖Bsp,r
4

√
1− 4C3‖m0‖2Bsp,r t

+
‖m0‖Bsp,r

4

√
1− 4C3‖m0‖2Bsp,r t

∫ t

0

C3‖m0‖2Bsp,rdτ

(1− 4C3‖m0‖2Bsp,r t)
5
4

)

=
C‖m0‖Bsp,r√

1− 4C3‖m0‖2Bsp,r t

for ∀t ∈ [0, T ]. Hence we obtain that the sequence {m(n)}n∈N+ is uniformly
bounded in the case of ‖m(n)‖Bsp,r ≥ 1 in the interval [0, T ]. On this base,

utilizing the Equ. (3.15), it is not difficult to see that {∂tm(n)}n∈N+ is uni-
formly bounded in C([0, T ];Bs−1p,r ). Therefore, we have proved the uniformly

boundedness of the sequence {m(n)}n∈N+ in Esp,r(T ).



280 B. LIU AND L. ZHANG

Next, we shall show that the sequence {m(n)}n∈N+ is a Cauchy sequence in
C([0, T ];Bs−1p.r ). To this end, let us consider the following equation:



∂t(m
(n+k+1) −m(n+1)) + (u(n+k) + u(n+k)x )2∂x(m(n+k+1) −m(n+k))

= [(u(n) + u(n)x )2 − (u(n+k) + u(n+k)x )2]m(n+1)
x

+ [(m(n+k))2 − (m(n))2](u(n+k) + u(n+k)x )

+ (m(n))2(u(n+k) + u(n+k)x − u(n) − u(n)x )

+ (m(n) −m(n+k))(u(n+k) + u(n+k)x )2

+m(n+k)[(u(n) + u(n)x )2 − (u(n+k) + u(n+k)x )2]

, F (u(n), u(n+k),m(n),m(n+k)),

(m(n+k+1) −m(n+1))(x, 0) = Sn+k+1m0 − Sn+1m0.

(3.23)

For s > max{ 1p ,
1
2 , 1−

1
p} but s 6= 2 + 1

p , by means of Lemma 2.9, we obtain

‖(m(n+k+1) −m(n+1))(t)‖Bs−1
p,r

(3.24)

≤ ‖Sn+k+1m0 − Sn+1m0‖Bs−1
p,r

+ C

∫ t

0

V ′(s)‖(m(n+k+1) −m(n+1))(t)‖Bs−1
p,r

ds

+

∫ t

0

‖F (u(n), u(n+k),m(n),m(n+k))‖Bs−1
p,r

ds.

Thanks to the uniformly boundedness of {m(n)}n∈N+ in the space C([0, T ];Bs−1p.r ),
we have

V ′(s) = ‖∂x(u(n) + u(n)x )2‖Bs−1
p,r

+ ‖∂x(u(n) + u(n)x )2‖
B

1
p
p,r∩L∞

≤ C‖m(n)‖2Bsp,r ≤ C
(3.25)

for some positive constant C which is independent of n.
Similar to the estimates in the proof of Lemma 3.4, we can deduce that

‖F (u(n), u(n+k),m(n),m(n+k))‖Bs−1
p,r

≤ C‖m(n+k) −m(n)‖Bs−1
p,r

(
‖m(n)‖2Bsp,r + ‖m(n+k)‖2Bsp,r

)
.

(3.26)

Noting that

‖m(n+k)
0 −m(n)

0 ‖Bs−1
p,r

= ‖Sn+k+1m0 − Sn+1m0‖Bs−1
p,r

≤

( ∑
q≥−1

2q(s−1)r

∥∥∥∥∥∆q

(
n+k∑
q=n+1

∆qm0

)∥∥∥∥∥
r

Lp

) 1
r

≤ C

(
n+k∑
q=n+1

2−qr2qrs‖∆qm0)‖rLp

) 1
r

≤ C2−n‖m0‖Bsp,r ,(3.27)
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which combined with (3.24), (3.25) and (3.26) yield that

‖(m(n+k+1) −m(n+1))(t)‖Bs−1
p,r

≤ C

(
2−n‖m0‖Bsp,r +

∫ t

0

‖m(n+k)(τ)−m(n)(τ)‖Bs−1
p,r

dτ

)
.

(3.28)

Setting

Hn,k(t) = ‖(m(n+k) −m(n))(t)‖Bs−1
p,r

.

By (3.28) and using the induction with respect to n, for ∀k ∈ N+, we have

sup
t∈[0,T ]

Hn+1,k(t) ≤ C
(

2−n +
22−nt2

2!
+ · · ·+ tn

n!

)
+ C

∫ t

0

(t− τ)n

n!
H0,k(τ)dτ

≤ C2−n
(

1 + 2T + · · ·+ (2T )n

n!

)
+
CTn+1

(n+ 1)!

≤ Ce2T 2−n +
CTn+1

(n+ 1)!
−→ 0 as n→∞.(3.29)

This implies that the approximation solution {m(n)}n∈N+ is a Cauchy sequence
in C([0, T ];Bs−1p,r ).

For the critical case s = 2 + 1
p , by applying the interpolation method which

has been used in the proof of Lemma 3.4, we can show that {m(n)}n∈N+ is a

Cauchy sequence in C([0, T ];B
1+ 1

p
p,r ). So there exists m such that m(n) → m in

C([0, T ];Bs−1p,r ).
This completes the proof of Lemma 3.5. �

Based on the above two lemmas, we can now prove the main result in this
section.

Proof of Theorem 3.2. By Lemma 3.5, {m(n)}n∈N+ is a Cauchy sequence in
C([0, T ];Bs−1p,r ), there exists a function m ∈ C([0, T ];Bs−1p,r ) such that m(n) →
m in C([0, T ];Bs−1p,r ) as n → ∞. Since {m(n)}n∈N+ is uniformly bounded in
C([0, T ];Bsp,r), using the Fatou Lemma for Besov spaces, we get

m ∈ L∞([0, T ];Bsp,r), and ‖m‖L∞([0,T ];Bsp,r)
≤ C lim inf

n→∞
‖m(n)‖Bsp,r .

Since m(n) → m in C([0, T ];Bs−1p,r ), an interpolation argument ensures that

the convergence holds true in C([0, T ];Bs
′

p,r), for ∀s′ < s. Then, by passing
to the limit in (3.15), we conclude that m is a solution to the Equ. (3.1) in

the sense of C([0, T ];Bs
′−1
p,r ), for ∀s′ < s. Since m ∈ L∞([0, T ];Bsp,r), one can

verify that the right hand side of the Equ. (3.1) belong to L∞([0, T ];Bsp,r).

Using the Equ. (3.1) again, we see that ∂tm ∈ C([0, T ];Bs−1p,r ) for r < ∞ and

∂tm ∈ L∞([0, T ];Bs−1p,r ) otherwise, hence we get that m ∈ Esp,r(T ).

The continuity of the solution mapping in C([0, T ];Bsp,r) ∩ C1([0, T ];Bs−1p,r )
for r <∞ can be proved by using a standard sequence of viscosity approximate
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solutions {mε}ε>0 to the Equ. (3.1), which uniformly converges in C([0, T ];Bsp,r)

∩C1([0, T ];Bs−1p,r ).
This finishes the proof of Theorem 3.2. �

3.2. Local well-posedness in the critical Besov space B
1
2
2,1.

This subsection is devoted to the well-posedness of the Equ. (3.1) in B
1
2
2,1.

However, as we said in the Introduction, one can not obtain the convergence
of the sequence {m(n)}n∈N+ directly, since the estimate

‖fg‖Bsp,r ≤ C‖f‖Bsp,r‖g‖Bs+1
p,r

which was applied in the proof of Theorem 3.2 does not hold anymore. What
saves the game in some sense is a new Moser-type estimate (Lemma 2.8), which
together with the logarithmic interpolation inequality and the Osgood’s Lemma
enable us to finish the proof of the desired result.

The main result in the subsection can be stated as follows.

Theorem 3.6. Let m0 ∈ B
1
2
2,1 be the initial data, there exists a

T , T (‖m0‖
B

1
2
2,1

) > 0

such that the Equ. (3.1) admits a unique solution

m ∈ C([0, T ];B
1
2
2,1) ∩ C1([0, T ];B

− 1
2

2,1 ).

Especially, for T = 3
16C3‖m0‖2

B
1/2
2,1

, we have ‖m‖
L∞([0,T ];B

1
2
2,1)
≤ 2C‖m0‖

B
1
2
2,1

.

Moreover, the solution mapping Φ : B
1
2
2,1 7→ C([0, T ];Bs2,1) is Hölder contin-

uous, precisely,

‖m(2) −m(1)‖L∞([0,T ];Bs2,1)
≤ C‖m(2)(0)−m(1)(0)‖θ exp(−CT )

B
1
2
2,1

for θ = 1
2 − s ∈ (0, 1), where m(i) is the solution of Equ. (3.1) corresponding to

m(i)(0), i = 1, 2.

Proof. The proof of Theorem 3.6 will be divided into several steps.
Step 1. Consider the approximation equation (3.15) in the previous sub-

section, and assume that m(n) ∈ L∞(0, T ;B
1
2
2,1). Noting that B

1
2
2,1 is a Ba-

nach algebra, it is easy to see that (m(n))2(u(n) + u
(n)
x ), m(n)(u(n) + u

(n)
x )2 ∈

L∞(0, T ;B
1
2
2,1). Taking advantage of Lemma 2.10, we obtain that m(n+1) ∈

L∞(0, T ;B
1
2
2,1), for any T > 0.

Step 2. Using the similar argument in Theorem 3.2, one can find T > 0 such
that 4TC3‖m0‖2Bsp,r < 1, and the sequence {m(n)}n∈N+ is uniformly bounded
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in B
1
2
2,1 satisfying

‖m(n)(t)‖
B

1
2
2,1

≤
C‖m0‖

B
1
2
2,1√

1− 4C3‖m0‖2
B

1
2
2,1

t
(3.30)

≤
C‖m0‖

B
1
2
2,1√

1− 4C3‖m0‖2
B

1
2
2,1

T
,M for ∀t ∈ [0, T ],

where the constant C > 0 is independent of the n and T . Especially, if
we choose T = 3

16C3‖m0‖2
B

1/2
2,1

, it follows from (3.30) that ‖m(n)(t)‖
B

1
2
2,1

≤

2C‖m0‖
B

1
2
2,1

for all t ∈ [0, T ].

Step 3. To obtain the solution, we now prove that the approximation solution

{m(n)}n∈N+ is a Cauchy sequence in L∞([0, T ];B
− 1

2
2,∞). To this end, applying

Lemma 2.9 to Equ. (3.23) to get

‖m(n+k+1)(t)−m(n+1)(t)‖
B
− 1

2
2,∞

(3.31)

≤ C

(
‖Sn+k+1m0 − Sn+1m0‖

B
− 1

2
2,∞

+

∫ t

0

‖F (u(n), u(n+k),m(n),m(n+k))‖
B
− 1

2
2,∞

ds

)
,

where the functional F (u(n), u(n+k),m(n),m(n+k)) is defined as same as that
in (3.23). And we have used the uniform boundedness of {m(n)}n∈N+ in

L∞([0, T ];B
1
2
2,1).

By virtue of the 1-D Moser-type estimate (see Lemma 2.8) and the embed-

ding B
1
2
2,1 ↪→ B

1
2
2,∞ ∩ L∞, we can estimate that

‖[(u(n) + u(n)x )2 − (u(n+k) + u(n+k)x )2]m(n+1)
x ‖

B
− 1

2
2,∞

(3.32)

≤ C‖(u(n) + u(n)x + u(n+k) + u(n+k)x )(u(n) − u(n+k) + u(n)x − u(n+k)x )m(n+1)
x ‖

B
− 1

2
2,∞

≤ C(‖u(n) − u(n+k)‖
B

1
2
2,∞∩L∞

+ ‖u(n)x − u(n+k)x ‖
B

1
2
2,∞∩L∞

)‖m(n+1)
x ‖

B
− 1

2
2,∞

≤ C(‖u(n) − u(n+k)‖
B

1
2
2,1

+ ‖u(n) − u(n+k)‖
B

3
2
2,1

)

≤ C‖m(n) −m(n+k)‖
B
− 1

2
2,1

,

‖[(m(n+k))2 − (m(n))2](u(n+k) + u(n+k)x )‖
B
− 1

2
2,∞

(3.33)
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≤ C‖(m(n+k) −m(n))(m(n+k) +m(n))‖
B
− 1

2
2,∞

‖u(n+k) + u(n+k)x ‖
B

1
2
2,∞∩L∞

≤ C‖m(n+k) +m(n)‖
B

1
2
2,∞∩L∞

‖m(n+k) −m(n)‖
B
− 1

2
2,∞

‖m(n+k)‖
B

1
2
2,1

≤ C‖m(n) −m(n+k)‖
B
− 1

2
2,1

,

‖(m(n))2(u(n+k) − u(n) + u(n+k)x − u(n)x )

(3.34)

+ (m(n) −m(n+k))(u(n+k) + u(n+k)x )2‖
B
− 1

2
2,∞

≤ C(‖u(n+k) − u(n) + u(n+k)x − u(n)x ‖
B
− 1

2
2,∞

+ ‖m(n) −m(n+k)‖
B
− 1

2
2,∞

)

≤ C‖m(n) −m(n+k)‖
B
− 1

2
2,1

,

‖m(n+k)[(u(n) + u(n)x )2 − (u(n+k) + u(n+k)x )2]‖
B
− 1

2
2,∞

(3.35)

≤ C‖u(n) + u(n)x + u(n+k) + u(n+k)x ‖
B

1
2
2,∞∩L∞

‖u(n) − u(n+k) + u(n)x − u(n+k)x ‖
B
− 1

2
2,∞

≤ C(‖u(n)‖
B

3
2
2,1

+ ‖u(n+k)‖
B

3
2
2,1

)(‖u(n) − u(n+k)‖
B

1
2
2,1

+ ‖u(n) − u(n+k)‖
B

3
2
2,1

)

≤ C‖m(n) −m(n+k)‖
B
− 1

2
2,1

.

Therefore, by (3.31)-(3.35), we obtain

‖m(n+k+1)(t)−m(n+1)(t)‖
B
− 1

2
2,∞

≤ C

(
2−n‖m0‖

B
1
2
2,1

+

∫ t

0

‖m(n)(s)−m(n+k)(s)‖
B
− 1

2
2,1

ds

)
,

(3.36)

where we used the fact that there exists a positive constant C which is inde-
pendent of n such that

‖Sn+k+1m0 − Sn+1m0‖
B
− 1

2
2,∞

≤ C2−n‖m0‖
B

1
2
2,1

.

Noting that ‖m(n)(t)‖
B

1
2
2,1

+ ‖m(n+k)(t)‖
B

1
2
2,1

≤ 2M for all t ∈ [0, T ). For

convenience, setting Kn,k(t) = ‖m(n+k+1)(t)−m(n+1)(t)‖
B
− 1

2
2,∞

. Thanks to the

logarithmic interpolation inequality (see (2) of Lemma 2.7), we deduce from
(3.36) that

Kn+1,k(t) ≤ C
[
2−n‖m0‖

B
1
2
2,1

+

∫ t

0

Kn,k(s) log

(
e+

2M

Kn,k(s)

)
ds

]
.(3.37)
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Therefore, by using the monotonicity of the function f(x) = x log(e + C
x ), we

have

lim sup
n→∞

sup
k∈N+

Kn+1,k(t)

≤ C

∫ t

0

lim sup
n→∞

sup
k∈N+

Kn,k(s) log

(
e+

2M

lim sup
n→∞

sup
k∈N+

Kn,k(s)

)
ds.

(3.38)

By utilizing the Osgood’s Lemma (see Lemma 2.11) with a = 0 and µ(x) =
x ln(e+ C

x ), we get

lim sup
n→∞

sup
k∈N+

Kn,k(t) = 0 for ∀t ∈ [0, T ],

which implies that {m(n)}n∈N+ is a Cauchy sequence in C([0, T ];B
− 1

2
2,∞), and

thus m(n) convergence to some function m ∈ C([0, T ];B
− 1

2
2,∞). By applying

the similar argument in the proof of Theorem 3.2, we can verify that m ∈
C([0, T ];B

1
2
2,1) ∩ C1([0, T ];B

− 1
2

2,1 ) is indeed a solution to the Equ. (3.1).
Step 4. We prove the uniqueness and stability of the solutions. By applying

Lemma 2.9 to the Equ. (3.4) to get

‖m(12)(t)‖
B
− 1

2
2,∞

≤ C
(
‖m(12)

0 ‖
B
− 1

2
2,∞

+

∫ t

0

‖F (12)(·, s)‖
B
− 1

2
2,∞

ds

)
.(3.39)

Similar to the estimates in Step 3, we can deal with the term ‖F (12)(·, s)‖
B
− 1

2
2,∞

by means of the 1-D Moser-type inequality, and it follows from (3.39) that

‖m(12)(t)‖
B
− 1

2
2,∞

(3.40)

≤ C

(
‖m(12)

0 ‖
B
− 1

2
2,∞

+

∫ t

0

‖m(12)(·, s)‖
B
− 1

2
2,1

ds

)
≤ C

(
‖m(12)

0 ‖
B
− 1

2
2,∞

+

∫ t

0

‖m(12)(·, s)‖
B
− 1

2
2,∞

log

(
e+

2M

‖m(12)(·, s)‖
B
− 1

2
2,∞

)
ds

)
.

If ‖m(12)
0 ‖

B
− 1

2
2,∞

< min

{
1, C

2M

}
, using the Osgood’s Lemma to (3.40), for ∀t ∈

[0, T ), we get

‖m(12)(t)‖
B
−1/2
2,∞

e
≤
(C‖m(12)(0)‖

B
−1/2
2,∞

e

)exp(−C ln(e+ C
2M

)T )

,

which is equivalent to

‖m(2)(t)−m(1)(t)‖
B
− 1

2
2,∞

≤ C‖m(2)(0)−m(1)(0)‖
exp(−C ln(e+ C

2M
)T )

B
1
2
2,1

(3.41)
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for all t ∈ [0, T ). This implies that if the initial datum m′0,m0 satisfies ‖m′0 −
m0‖

B
1
2
2,1

< min{1, C
2M
}, then the solution mapping from B

1
2
2,1 to C([0, T );B

− 1
2

2,∞)

is Hölder continuous.
However, we shall show that the solution mapping is Hölder continuous from

B
1
2
2,1 to Bs2,1 for |s| < 1

2 . Indeed, by virtue of the interpolation inequality ((1)

of Lemma 2.7), we have

‖m(2)(t)−m(1)(t)‖Bs2,1(3.42)

≤ C

(
1

θ
+

1

1− θ

)
‖m(2)(t)−m(1)(t)‖θ

B
− 1

2
2,∞

‖m(2)(t)−m(1)(t)‖1−θ
B

1
2
2,∞

≤ C

(
1

θ
+

1

1− θ

)
‖m(2)(t)−m(1)(t)‖θ

B
− 1

2
2,∞

(‖m(2)‖
B

1
2
2,1

+ ‖m(1)‖
B

1
2
2,1

)1−θ

≤ C
(2M)1−θCθ

θ(1− θ)
‖m(2)(0)−m(1)(0)‖

θ exp(−C ln(e+ C
2M

)T )

B
− 1

2
2,∞

≤ C(θ, T )‖m(2)(0)−m(1)(0)‖θ exp(−C(T ))

B
1
2
2,1

for ∀θ = 1
2 − s ∈ (0, 1), where C(a, b, . . .) means that the positive constant C

depends only on a, b, . . .. Thus the solution mapping is Hölder continuous from

B
1
2
2,1 to C([0, T ], Bs2,1) with the Hölder exponent depends only on θ and T .
The proof of Theorem 3.6 is completed. �

4. Blow-up phenomena

In this section, we shall establish blow-up criteria for the solutions to the
Equ. (3.1).

Lemma 4.1. (1)[1] For s > 0, there exists constant C > 0 independent of u
and v such that

‖uv‖Hs ≤ C(‖u‖Hs‖v‖L∞ + ‖v‖Hs‖u‖Hs),
‖u∂xv‖Hs ≤ C(‖u‖Hs+1‖v‖L∞ + ‖u‖L∞‖∂xv‖Hs).

(2) (Kato-Ponce [30]) For s > 0, if f ∈ Hs ∩W 1,∞, g ∈ Hs−1 ∩ L∞, set
Λs = (1− ∂2x)

s
2 , then

‖Λs(uv)− uΛsv‖L2 ≤ C(‖Λsu‖L2‖v‖L∞ + ‖ux‖L∞‖Λs−1v‖L2).

The following lemma is a corollary of Lemma 2.9.

Lemma 4.2 ([1]). Consider the transport equation

∂tf + v∂xf = g, f(x, 0) = f0(x).

Let 0 ≤ σ < 1, and suppose that f0 ∈ Hσ, g ∈ L1(0, T ;Hσ), vx ∈ L1(0, T ;L∞),
f ∈ L∞(0, T ;Hσ) ∩ C([0, T ];S ′). Then f ∈ C(0, T ;Hσ). More precisely, there
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exists a constant C depends only on σ such that, for every 0 < t ≤ T ,

‖f‖Hσ ≤ ‖f0‖Hσ + C

∫ t

0

‖g(τ)‖Hσdτ + C

∫ t

0

V ′(τ)‖f(τ)‖Hσdτ(4.1)

with V (t) =
∫ t
0
‖v(τ)‖L∞ + ‖∂xv(τ)‖L∞dτ .

The first blow-up criteria for the strong solution to Equ. (3.1) can be stated
as follows.

Theorem 4.3. Let m0 = (1 − ∂2x)u0 ∈ Hs with s > 1
2 , and T > 0 is the

maximum existence time of the corresponding solution m to the equation (3.1).
Then

T <∞ =⇒
∫ T

0

‖m(·, t)‖2L∞dt =∞.(4.2)

Proof. Since Hs ≈ Bs2,2 for any s > 1
2 , the existence of the solution m ∈

C([0, T ];Hs) ∩C1([0, T ];Hs−1) is ensured by Theorem 3.2. We now prove the
Theorem 4.3 by induction with respect to the index s, which can be achieved
by three steps.

Step 1. For 1
2 < s < 1, by using Lemma 4.2 to the first equation of (3.1),

we obtain

‖m(t)‖Hs ≤ ‖m0‖Hs

+ C

∫ t

0

(‖(u+ ux)2(τ)‖L∞ + ‖∂x(u+ ux)2(τ)‖L∞)‖m(τ)‖Hsdτ

+

∫ t

0

‖m2(u+ ux)(τ)‖Hs + ‖m(u+ ux)2(τ)‖Hsdτ(4.3)

for all t ∈ [0, T ). Noting that u = (1 − ∂x)−1m = G ∗m with G(x) , 1
2e
−|x|

on R, ∂xu = ∂xG ∗m, ∂2xu = u−m and ‖G‖L1 = ‖∂xG‖L1 = 1. By using the
Young inequality, we have

‖u‖L∞ , ‖ux‖L∞ , ‖uxx‖L∞ ≤ ‖m‖L∞ .(4.4)

Similarly, for all s ∈ R, we have

‖u‖Hs , ‖ux‖Hs , ‖uxx‖Hs ≤ ‖m‖Hs .(4.5)

Therefore, we have

‖(u+ ux)2‖L∞ + ‖∂x(u+ ux)2‖L∞

≤ C(‖u‖L∞ + ‖ux‖L∞)(‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞) ≤ C‖m‖2L∞ .(4.6)

Owing to the (1) of Lemma 4.1, and the properties (4.3) and (4.4), we have

‖m2(u+ ux)‖Hs ≤ C(‖u+ ux‖Hs‖m2‖L∞ + ‖u+ ux‖L∞‖m2‖Hs)
≤ C(‖m‖Hs‖m2‖L∞ + ‖m‖L∞‖m2‖Hs)
≤ C‖m‖Hs‖m‖2L∞ ,(4.7)
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‖m(u+ ux)2‖Hs ≤ C(‖(u+ ux)2‖L∞‖m‖Hs + ‖m‖L∞‖(u+ ux)2‖Hs)
≤ C(‖u+ ux‖2L∞‖m‖Hs + ‖m‖L∞‖(u+ ux)2‖Hs)
≤ C(‖m‖2L∞‖m‖Hs + ‖m‖L∞‖u+ ux‖L∞‖u+ ux‖Hs)
≤ C‖m‖2L∞‖m‖Hs .(4.8)

It follows from (4.3) and (4.6)-(4.8) that

‖m(t)‖Hs ≤ ‖m0‖Hs + C

∫ t

0

‖m‖2L∞‖m(τ)‖Hsdτ,

which combined with the Gronwall inequality yields that

‖m(t)‖Hs ≤ ‖m0‖Hs exp

{
C

∫ t

0

‖m(τ)‖2L∞dτ
}

for ∀t ∈ [0, T ).(4.9)

Assume that T <∞, it follows from (4.9) that

lim sup
t↑T

‖m(t)‖Hs ≤MT , ‖m0‖Hs exp

{
C

∫ T

0

‖m(τ)‖2L∞dτ
}
<∞.

By using a standard method used in [15], we can extends the solution m to
[0, T + ε] for some ε > 0 small enough, which contradict to the fact that T > 0
is the maximum existence time of the solution. This completes the proof of the
theorem for s ∈ ( 1

2 , 1).
Step 2. For 1 ≤ s < 2, differentiating the Equ. (3.1) with respect to x, we

get

∂t(mx) + (u+ ux)2∂x(mx) + 2(u+ ux)(ux + uxx)mx

= 2mmx(u+ ux) +m2(ux + uxx)−mx(u+ ux)2 − 2m(ux + uxx).(4.10)

By virtue of Lemma 4.2 with s− 1 ∈ [0, 1), we obtain

‖∂xm(t)‖Hs−1 ≤ ‖∂xm0‖Hs−1 + C

∫ t

0

‖(u+ ux)2‖W 1,∞‖∂xm(τ)‖Hs−1dτ

+

∫ t

0

(
‖2mmx(u+ ux)‖Hs−1 + ‖(m2 − 2m)(ux + uxx)‖Hs−1

+ ‖mx(u+ ux)2‖Hs−1 + 2‖(u+ ux)(ux + uxx)mx‖Hs−1

)
dτ.(4.11)

Taking advantage of (2) of Lemma 4.1 and (4.4)-(4.5), we have

‖2mmx(u+ ux)‖Hs−1 + ‖(m2 − 2m)(ux + uxx)‖Hs−1

≤ C(‖u+ ux‖Hs‖m2‖L∞ + ‖u+ ux‖L∞‖∂x(m2)‖Hs−1)

≤ C(‖m‖Hs‖m‖2L∞ + ‖m‖L∞‖m2‖Hs)
≤ C‖m‖Hs‖m‖2L∞ ,(4.12)

‖mx(u+ ux)2‖Hs−1 + 2‖(u+ ux)(ux + uxx)mx‖Hs−1

≤ ‖(u+ ux)2‖Hs‖m‖L∞ + ‖(u+ ux)2‖L∞‖mx‖Hs−1
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≤ ‖u+ ux‖L∞‖m‖L∞‖u+ ux‖Hs + ‖u+ ux‖2L∞‖m‖Hs

≤ C‖m‖2L∞‖m‖Hs ,(4.13)

where we used the fact that ‖∂xf‖Hs−1 ≤ C‖f‖Hs . It then follows from (4.6),
(4.11)-(4.13) that

‖∂xm(t)‖Hs−1 ≤ ‖m0‖Hs + C

∫ t

0

‖m‖2L∞‖m‖Hsdτ,

which together with (4.9) with s− 1 instead of s and the Gronwall inequality
ensures that, for s ∈ (1, 2), (4.9) holds. Taking the similar argument in Step 1,
we prove can the theorem for s ∈ (1, 2).

Step 3. In the case of s ≥ 2, by applying Λs = (1−∂2x)
s
2 to the first equation

of (3.1), we get

∂t(Λ
sm) + (u+ ux)2∂x(Λsm)

= (u+ ux)2Λsmx − Λs[(u+ ux)2mx] + Λs[m2(u+ ux)−m(u+ ux)2].(4.14)

Multiplying both sides of (4.14) by Λsm and integrating with respect to x on
R, we get

1

2

d

dt

∫
R

(Λsm)2dx

= − 1

2

∫
R

(u+ ux)2∂x(Λsm)2dx

+

∫
R

(
(u+ ux)2Λsmx − Λs[(u+ ux)2mx]

)
Λsmdx

+

∫
R

ΛsmΛs[m2(u+ ux)−m(u+ ux)2]dx.

By integrating by parts and using the Hölder inequality, we obtain

d

dt
‖Λsm(t)‖L2 ≤ ‖(u+ ux)(ux + uxx)‖L∞‖Λsm(t)‖L2

+ ‖Λs[m2(u+ ux)−m(u+ ux)2]‖L2

+ ‖(u+ ux)2Λsmx − Λs[(u+ ux)2mx]‖L2 .(4.15)

Integrating both sides of the inequality (4.15) from 0 to t, we have

‖m(t)‖Hs ≤ ‖m0‖Hs +

∫ t

0

‖(u+ ux)(ux + uxx)‖L∞‖m(τ)‖Hsdτ

+

∫ t

0

‖(u+ ux)2Λsmx − Λs[(u+ ux)2mx]‖L2dτ

+

∫ t

0

(‖m2(u+ ux)‖Hs + ‖m(u+ ux)2‖Hs)dτ.(4.16)
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By means of the commutator estimate (see (2) of Lemma 4.1) and (4.4)-(4.5),
we have

‖(u+ ux)2Λsmx − Λs[(u+ ux)2mx]‖L2

(4.17)

≤ C(‖Λs(u+ ux)2‖L2‖mx‖L∞ + ‖∂x(u+ ux)2‖L∞‖Λs−1mx‖L2)

≤ C(‖u+ ux‖L∞‖(u+ ux)‖Hs‖mx‖L∞ + ‖(u+ ux)(ux + uxx)‖L∞‖m‖Hs)
≤ C(‖m‖L∞‖m‖Hs‖m‖

H
3
2
+ε + ‖m‖2L∞‖m‖Hs),

where we used the Sobolev embeddingH
3
2+ε ↪→W 1,∞ for 0 < ε < 1

2 . Moreover,
by virtue of (1) of Lemma 4.1, we can estimate that

‖m2(u+ ux)‖Hs + ‖m(u+ ux)2‖Hs(4.18)

≤ C(‖m‖2L∞‖u+ ux‖Hs + ‖m2‖Hs‖u+ ux‖L∞ + ‖m‖L∞‖(u+ ux)2‖Hs

+ ‖m‖Hs‖u+ ux‖2L∞)

≤ C(‖m‖2L∞‖m‖Hs + ‖m‖L∞‖u+ ux‖L∞‖u+ ux‖Hs)
≤ C‖m‖2L∞‖m‖Hs .

Therefore, we deduce from (4.16)-(4.18) that

‖m(t)‖Hs ≤ ‖m0‖Hs +

∫ t

0

‖m‖2L∞‖m(τ)‖Hsdτ

+ C

∫ t

0

‖m‖L∞‖m‖Hs‖m‖
H

3
2
+εdτ.

Taking the Gronwall inequality, we obtain

‖m(t)‖Hs ≤ ‖m0‖Hs exp

{
C

∫ t

0

(‖m‖2L∞ + ‖m‖2
H

3
2
+ε

)dτ

}
.(4.19)

Assume that T < ∞ and
∫ T
0
‖m(t)‖2L∞dt < ∞, as a conclusion of Step 2 for

3
2 + ε ∈ (1, 2), we see that supt∈[0,T ) ‖m(t)‖

H
3
2
+ε is uniformly bounded. Hence

we deduce from (4.19) that

lim sup
t→T

‖m(t)‖Hs <∞,

which contradict to the fact that T > 0 is the maximum existence time of the
solution.

This completes the proof of Theorem 4.3. �

Remark 4.4. The maximum existence time T can be chosen independent of the
regularity index s. Indeed, let m0 ∈ Hs(s > 1

2 ) and consider some s′ ∈ ( 1
2 , s).

Theorem 3.2 ensures the existence of unique solution us (resp., ms′) in Hs

(resp., Hs′) with the maximum existence time Ts (resp., Ts′). Since Hs ↪→ Hs′ ,
it follows from the uniqueness that Ts ≤ Ts′ , and also ms ≡ ms′ on [0, Ts). On



THE CAUCHY PROBLEM 291

the other hand, if Ts < Ts′ , then ms′ ∈ C([0, Ts];H
s′) ↪→ L2(0, Ts;L

∞), which
contradicts to Theorem 4.3. Hence we have Ts = Ts′ .

Corollary 4.5. Let m0 ∈ Hs with s > 1
2 and T > 0 be the maximum existence

time of the solution to the Equ. (3.1). Then the solution will blow up in finite
time T if and only if

lim sup
t→T

‖m(·, t)‖L∞ =∞.

Proof. By using the Sobolev embedding theorem, Corollary 4.5 is a direct con-
clusion of Theorem 4.3, we omit the details here. �

Consider the following ordinary differential equation{
dq(x,t)
dt = (u+ ux)2(q(x, t), t), x ∈ R, t ∈ [0, T ),

q(x, 0) = x, x ∈ R,
(4.20)

for the flow generated by (u+ ux)2.

Lemma 4.6. Let m0 ∈ Hs with s > 1
2 , and T > 0 is the maximum existence

time of solution to the Equ. (3.1). Then the initial value problem (4.20) admits
a unique solution q ∈ C1(R× [0, T );R) which is an increasing diffeomorphism
of R with respect to x, and

qx(x, t) = exp

{∫ t

0

[2(u+ ux)(ux + uxx)](t, q(x, t))dτ

}
> 0(4.21)

for all x ∈ R and t ∈ [0, T ).

Proof. By Theorem 3.2, the solution m ∈ C([0, T ];Hs)∩C1([0, T ];Hs−1) with
s > 1

2 , hence u ∈ C1([0, T ];Hs−1) with s > 5
2 . Noting that Hs−1(R) ↪→ C1(R)

for s > 5
2 , both u and ux are bounded, Lipschitz in the space variable x and of

class in time. Therefore, it follows from the classical ODE theory that initial
value problem (4.20) admits a unique solution q ∈ C1(R× [0, T );R).

Differentiating the equation (4.20) with respect to x to get{
d
dtqx(x, t) = 2[(u+ ux)(ux + uxx)](q(x, t), t)qx(x, t), x ∈ R, t ∈ [0, T ),

qx(x, 0) = 1, x ∈ R,

which leads to

qx(x, t) = exp

{∫ t

0

[2(u+ ux)(ux + uxx)](q(x, t), t)dτ

}
, x ∈ R, t ∈ [0, T ).

(4.22)

For all T < T , it follows from the Sobolev embedding theorem that

sup
(x,t)∈R×[0,T )

∣∣∣[2(u+ ux)(ux + uxx)](x, t)
∣∣∣ ≤ C‖m‖2L∞ ≤ C‖m‖2Hs <∞.
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We infer from (4.22) that there exists a positive constant K such that qx(x, t) ≥
e−Kt > 0, for ∀(x, t) ∈ R × [0, T ), which shows that the mapping q(·, t) is an
increasing diffeomorphism of R before it blow-up. �

Lemma 4.7. Let m0 ∈ Hs with s > 1
2 , and T > 0 is the maximum existence

time of the solution to the Equ. (3.1). Then the following property holds:

m(q(x, t), t)qx(x, t) = m0(x) exp

{∫ t

0

[(u+ ux)(ux + uxx)](q(x, τ), τ)dτ

}(4.23)

for all (x, t) ∈ R × [0, T ). Moreover, if there exists a positive constant C > 0
such that −[(u+ ux)(ux + uxx)](x, t) ≥ −C for all (x, t) ∈ R× [0, T ), then we
have

‖m(·, t)‖L∞ ≤ CeCt‖m0‖L∞ for all t ∈ [0, T ).(4.24)

Proof. Differentiating the left hand side of (4.23) with respect to t, and taking
advantage of (4.22) and the Equ. (4.20), we obtain

d

dt
[m(q(x, t), t)qx(x, t)]

(4.25)

= (mt(q, t) +mx(q, t)qt(x, t))qx(x, t) +m(q, t)qxt(x, t)

= [mt +mx(u+ ux)2 + 2m(u+ ux)(ux + uxx)](q, t)qx(x, t)

= [m(u+ ux)− (u+ ux)2 + 2(u+ ux)(ux + uxx)](q, t)m(q(x, t), t)qx(x, t)

= [(u+ ux)(ux + uxx)](q, t)[m(q(x, t), t)qx(x, t)].

Consider the unknown function m(q(·, t), t)qx(·, t) with respect to t, we can
immediately deduce the Equ. (4.23) from (4.25). By Lemma 4.6, (4.23) and
the assumption, we have

‖m(·, t)‖L∞ = ‖m(q(·, t), t)‖L∞

=

∥∥∥∥m0q
−1
x (·, t) exp

{∫ t

0

[(u+ ux)(ux + uxx)](q(·, τ), τ)dτ

}∥∥∥∥
L∞

=

∥∥∥∥m0 exp

{
−
∫ t

0

[(u+ ux)(ux + uxx)](q(·, τ), τ)dτ

}∥∥∥∥
L∞

≤ ‖m0e
Ct‖L∞ ≤ CeCt‖m0‖L∞ .(4.26)

This completes the proof of Lemma 4.7. �

Remark 4.8. (1) By (4.21) and (4.23), if the initial data m0 do not change
sign, the solution m(x, t) along the characteristics q(x, t) will not change sign
for any t ∈ [0, T ).

(2) Since the mapping q(·, t) is a increasing diffeomorphism of R with respect
to x, if v(·, t) ∈ L∞, then we have ‖v(·, t)‖L∞ = ‖v(q(·, t), t)‖L∞ for all t ∈
[0, T ).
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Corollary 4.9. Under the conditions of Theorem 4.7, if m0 has compact sup-
port satisfying supp m0 ∈ [a, b], then the corresponding solution m has also
compact support such that supp m(·, t) ∈ [q(a, t), q(b, t)] for all t ∈ [0, T ), where
q(x, t) is the solution of Equ. (4.21).

Proof. By (4.23) and (4.22), we have

m(q(x, t), t) = m0(x)qx(x, t)−1 exp

{∫ t

0

[(u+ ux)(ux + uxx)](q(x, τ), τ)dτ

}
= m0(x) exp

{
−
∫ t

0

[(u+ ux)(ux + uxx)](q(x, τ), τ)dτ

}
.

Noting that m0 has compact support in [a, b], it follows from the previous
equality that m(q(x, t), t) = 0, for all x ∈ (−∞, a) ∪ (b,∞). Moreover, since
the mapping q(·, t) is an increasing diffeomorphism of R with respect to variable
x, we have

m(x, t) = 0 for all x ∈ (−∞, q(a, t)) ∪ (q(b, t),∞),

which implies that the solution m(x, t) has compact support in [q(a, t), q(b, t)].
�

Based on Lemma 4.7, we have the following new blow-up criteria.

Theorem 4.10. Let m0 ∈ Hs with s > 1
2 , and T > 0 is the maximum existence

time of the solution to the Equ. (3.1). Then the solution blows up in finite time
if and only if

lim sup
t→T

sup
x∈R
{[(u+ ux)(ux + uxx)](x, t)} = +∞.(4.27)

Proof. On the one hand, if (4.27) holds, then by virtue of the Sobolev embed-
ding theorem, we have

lim sup
t→T

sup
x∈R
{[(u+ ux)(ux + uxx)](x, t)}

≤ lim sup
t→T

‖(u+ ux)(·, t)‖L∞‖(ux + u−m)(·, t)‖L∞

≤ lim sup
t→T

‖m(·, t)‖2L∞ ≤ C lim sup
t→T

‖m(·, t)‖2Hs ,(4.28)

which shows that the solution m(x, t) will blow up at the finite time T .
On the other hand, if the solution blows up in finite time, and there exists a

positive constant C such that lim supt→T supx∈R{[(u+ ux)(ux + uxx)](x, t)} ≤
C, or equivalently,

−[(u+ ux)(ux + uxx)](x, t) ≥ −C, for all (x, t) ∈ R× [0, T ).

By means of Lemma 4.7, we have

∫ T

0

‖m(·, t)‖2L∞dt ≤
∫ T

0

C2e2Ct‖m0‖2L∞dt =
C

2
‖m0‖2L∞(e2CT − 1) <∞.

(4.29)
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By (4.29) and Theorem 4.3, the solution m(x, t) globally exits, which contra-
dicts to the fact that T <∞ is the maximum existence time of the solution to
the Equ. (3.1).

This completes the proof of Theorem 4.10. �
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