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TIME SCALES INTEGRAL INEQUALITIES FOR

SUPERQUADRATIC FUNCTIONS

Josipa Barić, Rabia Bibi, Martin Bohner, and Josip Pečarić

Abstract. In this paper, two different methods of proving Jensen’s in-
equality on time scales for superquadratic functions are demonstrated.
Some refinements of classical inequalities on time scales are obtained us-
ing properties of superquadratic functions and some known results for
isotonic linear functionals.

1. Introduction

1.1. On time scale calculus

The theory of time scales was introduced by Stefan Hilger in his Ph.D.
thesis [12] in 1988 as a unification of the theory of difference equations with
that of differential equations, unifying integral and differential calculus with
the calculus of finite differences, extending to cases “in between”, and offering
a formalism for studying hybrid discrete-continuous dynamic systems. It has
applications in any field that requires simultaneous modelling of discrete and
continuous data. Now, we briefly introduce the time scales calculus and refer
to [13, 14] and the monograph [10] for further details.

By a time scale T we mean any nonempty closed subset of R. The two most
popular examples of time scales are the real numbers R and the integers Z.
Since the time scale T may or may not be connected, we need the concept of
jump operators.

For t ∈ T, we define the forward jump operator σ : T → T by

σ(t) = inf {s ∈ T : s > t}

and the backward jump operator by

ρ(t) = sup {s ∈ T : s < t} .

In this definition, the convention is inf ∅ = supT and sup ∅ = inf T.
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If σ(t) > t, then we say that t is right-scattered, and if ρ(t) < t, then we say
that t is left-scattered. Points that are right-scattered and left-scattered at the
same time are called isolated. Also, if σ(t) = t, then t is said to be right-dense,
and if ρ(t) = t, then t is said to be left-dense. Points that are simultaneously
right-dense and left-dense are called dense. If T has a left-scattered maximum
M , then we define T

κ = T \ {M}; otherwise T
κ = T.

The mapping µ : T → [0,∞) defined by

µ(t) = σ(t)− t

is called the forward graininess function.
In the following considerations, T will denote a time scale, IT = I ∩ T will

denote a time scale interval (for any open or closed interval I in R), and [0,∞)T
will be used for the time scale interval [0,∞) ∩ T.

Definition 1.1. Assume f : T → R is a function and let t ∈ T
κ. Then we

define f∆(t) to be the number (provided it exists) with the property that given
any ε > 0, there is a neighborhood U of t such that

∣

∣(f (σ(t)) − f(s))− f∆(t) (σ(t) − s)
∣

∣ ≤ ε |σ(t) − s| for all s ∈ UT.

We call f∆(t) the delta derivative of f at t. We say that f is delta differentiable

on T
κ provided f∆(t) exists for all t ∈ T

κ.

For all t ∈ T
κ, we have the following properties.

(i) If f is delta differentiable at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is delta differen-

tiable at t with f∆(t) = f(σ(t))−f(t)
µ(t) .

(iii) If t is right-dense, then f is delta differentiable at t if and only if

lim
s→t

f(t)−f(s)
t−s

exists as a finite number. In this case, f∆(t)= lim
s→t

f(t)−f(s)
t−s

.

(iv) If f is delta differentiable at t, then f(σ(t)) = f(t) + µ(t)f∆(t).

Definition 1.2. A function f : T → R is called rd-continuous if it is continuous
at all right-dense points in T and its left-sided limits are finite at all left-dense
points in T. We denote by Crd the set of all rd-continuous functions. We say
that f is rd-continuously delta differentiable (and write f ∈ C1

rd) if f
∆(t) exists

for all t ∈ T
κ and f∆ ∈ Crd.

The set of all continuous functions on T contains Crd.

Definition 1.3. A function F : T → R is called a delta antiderivative of
f : T → R if F∆(t) = f(t) for all t ∈ T

κ. Then we define the delta integral by
∫ t

a

f(s)∆s = F (t)− F (a).

The importance of rd-continuous function is revealed by the following result.

Theorem 1.4 (See [10, Theorem 1.74]). Every rd-continuous function has a

delta antiderivative.
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Now we give some properties of the delta integral.

Theorem 1.5 (See [10, Theorem 1.77]). If a, b, c ∈ T, α ∈ R and f, g ∈ Crd,

then

(i)
∫ b

a
(f(t) + g(t))∆t =

∫ b

a
f(t)∆t+

∫ b

a
g(t)∆t;

(ii)
∫ b

a
αf(t)∆t = α

∫ b

a
f(t)∆t;

(iii)
∫ b

a
f(t)∆t = −

∫ a

b
f(t)∆t;

(iv)
∫ b

a
f(t)∆t =

∫ c

a
f(t)∆t+

∫ b

c
f(t)∆t;

(v)
∫ a

a
f(t)∆t = 0;

(vi) if f(t) ≥ 0 for all t, then
∫ b

a
f(t)∆t ≥ 0.

1.2. On superquadratic functions

The concept of superquadratic functions in one variable, as a generalization
of the class of convex functions, was recently introduced by S. Abramovich, G.
Jameson and G. Sinnamon in [3, 4]. Here we quote some definitions and theo-
rems that we use in this paper. More examples and properties of superquadratic
functions can be found in [1, 7, 9] and its references.

Definition 1.6. A function ϕ : [0,∞) → R is called superquadratic if there
exists a function C : [0,∞) → R such that

(1) ϕ(y)− ϕ(x) − ϕ(|y − x|) ≥ C(x)(y − x) for all x, y ≥ 0.

We say that ϕ is subquadratic if −ϕ is superquadratic.

For example, the function ϕ(x) = xp is superquadratic for p ≥ 2 and sub-
quadratic for p ∈ (0, 2].

The following lemma shows essentially that positive superquadratic func-
tions are also convex functions.

Lemma 1.7. Let ϕ be a superquadratic function with C as in Definition 1.6.

Then

(i) ϕ(0) ≤ 0;
(ii) if ϕ(0) = ϕ′(0) = 0, then C(x) = ϕ′(x) whenever ϕ is differentiable at

x > 0;
(iii) if ϕ ≥ 0, then ϕ is convex and ϕ(0) = ϕ′(0) = 0.

2. Jensen’s inequality

Jensen’s inequality is of great interest in the theory of differential and dif-
ference equations as well as other areas of mathematics. The original Jensen
inequality can be stated as follows (see also [16]).

Theorem 2.1 (See [15, Formula (5′)]). If g∈C([a, b], (c, d)) and f ∈C((c, d),R)
is convex, then

f

(

∫ b

a
g(s)ds

b− a

)

≤

∫ b

a
f(g(s))ds

b− a
.
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Jensen’s inequality for a superquadratic function is given in the following
theorem.

Theorem 2.2 (See [9, Theorem 1.4.1]). The inequality

f

(∫

gdµ

)

≤

∫ (

f (g(s))− f

(∣

∣

∣

∣

g(s)−

∫

gdµ

∣

∣

∣

∣

))

dµ(s)

holds for all probability measures µ and all nonnegative µ-integrable functions

g, if and only if f is superquadratic.

S. Banić and S. Varošanec proved in [8] the Jensen inequality for isotonic
linear functionals and superquadratic functions. First we introduce isotonic
linear functionals.

Let E be a nonempty set and L be a linear class of real-valued functions
f : E → R having the properties:

(L1) If f, g ∈ L and α, β ∈ R, then (αf + βg) ∈ L.
(L2) If f(t) = 1 for all t ∈ E, then f ∈ L.

An isotonic linear functional is a functional A : L → R having the properties:

(A1) If f, g ∈ L and α, β ∈ R, then A(αf + βg) = αA(f) + βA(g).
(A2) If f ∈ L and f(t) ≥ 0 for all t ∈ E, then A(f) ≥ 0.

Now, we quote the following result of Banić and Varošanec.

Theorem 2.3 (See [8, Theorem 10]). Let L satisfy conditions (L1), (L2) and

A satisfy conditions (A1) and (A2) on a nonempty set E. Suppose that k ∈ L

with k ≥ 0 and A(k) > 0 and that ϕ : [0,∞) → R is a continuous superquadratic

function. Then for all nonnegative f ∈ L such that

kf, kϕ(f), kϕ

(∣

∣

∣

∣

f −
A(kf)

A(k)
· 1

∣

∣

∣

∣

)

∈ L,

we have

ϕ

(

A(kf)

A(k)

)

≤
A(kϕ(f)) −A

(

kϕ
(∣

∣

∣
f − A(kf)

A(k) · 1
∣

∣

∣

))

A(k)
.

If ϕ is a subquadratic function, then a reversed inequality holds.

The Jensen inequality on time scales via the ∆-integral has been recently
obtained in [5] by Agarwal, Bohner and Peterson.

Theorem 2.4 (See [10, Theorem 6.17]). Let a, b ∈ T and c, d ∈ R. Suppose f :
[a, b]κ

T
→ (c, d) is rd-continuous and F : (c, d) → R is convex (resp., concave).

Then

(2) F

(

∫ b

a
f(t)∆t

b− a

)

≤

∫ b

a
F (f(t))∆t

b− a

(resp., the reversed inequality is valid). Moreover, if F is strictly convex or

strictly concave, then equality in (2) holds if and only if f is constant.
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In this section we will demonstrate how Jensen’s inequality on time scales for
superquadratic functions can be proved by two completely different approaches:
The first approach uses the methods and techniques of time scales calculus and
the second one follows from Theorem 2.3. According to the conclusion that
comes out from the second way of proving Jensen’s inequality, in the rest of
this paper, some new inequalities with delta-integrals will be obtained.

Now we present Jensen’s inequality on time scales for superquadratic func-
tions.

Theorem 2.5. Let a, b ∈ T. Suppose f : [a, b]κ
T
→ [0,∞) is rd-continuous and

ϕ : [0,∞) → R is continuous and superquadratic. Then

(3) ϕ

(

∫ b

a
f(t)∆t

b− a

)

≤
1

b− a

∫ b

a

[

ϕ(f(s))− ϕ

(∣

∣

∣

∣

∣

f(s)−

∫ b

a
f(t)∆t

b− a

∣

∣

∣

∣

∣

)]

∆s.

First Proof of Theorem 2.5. Let ϕ : [0,∞) → R be a superquadratic function
and let x0 ∈ [0,∞). According to (1), there is a constant C(x0) such that

(4) ϕ(y) ≥ ϕ(x0) + C(x0)(y − x0) + ϕ (|y − x0|) .

Since f is rd-continuous,

(5) x0 =

∫ b

a
f(t)∆t

b − a

is well defined. The function ϕ ◦ f is also rd-continuous, so we may apply (4)
with y = f(s) and (5) to obtain

(6)

ϕ(f(s)) ≥ ϕ

(

∫ b

a
f(t)∆t

b− a

)

+ C(x0)

(

f(s)−

∫ b

a
f(t)∆t

b− a

)

+ ϕ

(∣

∣

∣

∣

∣

f(s)−

∫ b

a
f(t)∆t

b− a

∣

∣

∣

∣

∣

)

.

Integrating (6) from a to b, we get

∫ b

a

[

ϕ(f(s))− ϕ

(∣

∣

∣

∣

∣

f(s)−

∫ b

a
f(t)∆t

b− a

∣

∣

∣

∣

∣

)]

∆s− (b− a)ϕ

(

∫ b

a
f(t)∆t

b− a

)

=

∫ b

a

ϕ(f(s))∆s −

∫ b

a

ϕ

(∣

∣

∣

∣

∣

f(s)−

∫ b

a
f(t)∆t

b− a

∣

∣

∣

∣

∣

)

∆s−

∫ b

a

ϕ

(

∫ b

a
f(t)∆t

b− a

)

∆s

≥ C(x0)

∫ b

a

[

f(s)−

∫ b

a
f(t)∆t

b− a

]

∆s

= C(x0)

[

∫ b

a

f(s)∆s− (b− a) · x0

]

= 0,
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from which (3) follows. �

The methods that will be used in the second proof of Theorem 2.5 are based
on the following consequence of Theorem 1.5.

Theorem 2.6 (See [6, Theorem 3.2]). Let T be a time scale. For a, b ∈ T with

a < b, let

E = [a, b) ∩ T and L = Crd ([a, b),R) .

Then (L1) and (L2) are satisfied. Moreover, let

A(f) =

∫ b

a

f(t)∆t,

where the integral is the delta integral. Then (A1) and (A2) are satisfied.

Second Proof of Theorem 2.5. Substituting A from Theorem 2.6 into Theorem
2.3 and using k(t) = 1 for all t ∈ [a, b]κ

T
, we get inequality (3). �

Remark 2.7. In the case when ϕ is a nonnegative superquadratic function and
therefore (by Lemma 1.7) a convex one too, the result of Theorem 2.5 refines
the result given in Theorem 2.4.

In [2,8], some classical inequalities are proved for isotonic linear functionals
and superquadratic functions. In the rest of this paper, using Theorem 2.6
and the results from [2, 8], some new inequalities for time scales integrals and
superquadratic functions will be obtained. Obviously, according to Theorem
2.6, it is not necessary to prove those new inequalities following the methods
and techniques of time scales calculus as they can be obtained easily from the
well-known inequalities for isotonic linear functionals.

3. Hölder’s inequality

Let us recall the following refinement of the functional Hölder inequality.

Theorem 3.1 (See [8, Theorem 13]). Let L satisfy conditions (L1), (L2) and

let A satisfy conditions (A1), (A2) on a nonempty set E. Let p 6= 1 and define

q by 1
p
+ 1

q
= 1. If p ≥ 2, then for all nonnegative functions g, h ∈ L such that

gh, gp, hq,
∣

∣

∣g − hq−1A(gh)
A(hq)

∣

∣

∣

p

∈ L, and A(hq) > 0, the inequality

(7) A(gh) ≤

[

A(gp)−A

(∣

∣

∣

∣

g − hq−1A(gh)

A(hq)

∣

∣

∣

∣

p)]
1

p

A
1

q (hq)

holds. In the case 0 < p < 2, the inequality in (7) is reversed.

Now Hölder’s inequality on time scales (see [5] and [10, Theorem 6.13]) can
be refined as follows.



TIME SCALES INTEGRAL INEQUALITIES FOR SUPERQUADRATIC FUNCTIONS 471

Theorem 3.2. Let a, b ∈ T. Let p 6= 1 and define q by 1
p
+ 1

q
= 1. If p ≥ 2,

then, for all rd-continuous functions g, h : [a, b]T → [0,∞) with
∫ b

a
hq(t)∆t > 0,

the inequality
∫ b

a

(gh)(t)∆t(8)

≤

[

∫ b

a

gp(t)∆t−

∫ b

a

(∣

∣

∣

∣

∣

g(s)−hq−1(s)

∫ b

a
(gh)(t)∆t
∫ b

a
hq(t)∆t

∣

∣

∣

∣

∣

p)

∆s

]

1

p
(

∫ b

a

hq(t)∆t

)
1

q

holds. In the case 0 < p < 2, the inequality in (8) is reversed.

Proof. The inequality (8) follows from Theorem 3.1 and Theorem 2.6. �

Remark 3.3. Since the delta integral is an isotonic linear functional, we have
∫ b

a

hq(t)∆t ≥ 0 and

∫ b

a

(∣

∣

∣

∣

∣

g(s)− hq−1(s)

∫ b

a
(gh)(t)∆t
∫ b

a
hq(t)∆t

∣

∣

∣

∣

∣

p)

∆s ≥ 0,

so the inequality (8) represents a refinement of the classical Hölder inequality
on time scales for nonnegative functions g and h.

Taking p = q = 2 in Theorem 3.2 gives the following special case of the above
Hölder inequality that we can name the refinement of the Cauchy–Schwarz
inequality on time scales.

Theorem 3.4. Let a, b ∈ T. For rd-continuous functions g, h : [a, b]T → [0,∞)

with
∫ b

a
h2(t)∆t > 0, the inequality

(9)

∫ b

a

(gh)(t)∆t

≤





∫ b

a

g2(t)∆t−

∫ b

a





∣

∣

∣

∣

∣

g(s)− h(s)

∫ b

a
(gh)(t)∆t
∫ b

a
h2(t)∆t

∣

∣

∣

∣

∣

2


∆s





1

2 (
∫ b

a

h2(t)∆t

)
1

2

holds.

4. Minkowski’s inequality

First, we quote the following functional Minkowski inequality for super-
quadratic functions.

Theorem 4.1 (See [8, Theorem 14]). Let L satisfy conditions (L1), (L2) and let

A satisfy conditions (A1), (A2) on a nonempty set E. If p ≥ 2 and A(g+h)p >

0, then for all nonnegative functions g, h on E such that (g + h)p, gp, hp ∈ L,

the inequality

A
1

p ((g + h)p) ≤

(

A(gp)−A

(∣

∣

∣

∣

g − (g + h)
A(g(g + h)p−1)

A(g + h)p

∣

∣

∣

∣

p))
1

p
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+

(

A(hp)−A

(∣

∣

∣

∣

h− (g + h)
A(h(g + h)p−1)

A(g + h)p

∣

∣

∣

∣

p))
1

p

holds.

Now, Minkowski’s inequality on time scales (see [5] and [10, Theorem 6.16])
can be refined as follows.

Theorem 4.2. Let a, b ∈ T and p ≥ 2. For rd-continuous functions g, h :

[a, b]T → [0,∞) with
∫ b

a
(g(s) + h(s))p∆s > 0, the inequality

(

∫ b

a

(g(t) + h(t))
p
∆t

)
1

p

(10)

≤

(

∫ b

a

gp(t)∆t−

∫ b

a

∣

∣

∣

∣

∣

g(t)− (g(t) + h(t))

∫ b

a
g(s) (g(s) + h(s))p−1 ∆s
∫ b

a
(g(s) + h(s))p∆s

∣

∣

∣

∣

∣

p

∆t

)

1

p

+

(

∫ b

a

hp(t)∆t−

∫ b

a

∣

∣

∣

∣

∣

h(t)− (g(t) + h(t))

∫ b

a
h(s)(g(s) + h(s))p−1∆s
∫ b

a
(g(s) + h(s))p∆s

∣

∣

∣

∣

∣

p

∆t

)

1

p

is valid.

Proof. The inequality (10) follows directly from Theorem 4.1 and Theorem
2.6. �

Remark 4.3. If the functions g and h in Theorem 4.2 are nonnegative, then
inequality (10) represents a refinement of Minkowski’s inequality on time scales
as established in [5, Theorem 3.3] since the delta integral is an isotonic linear
functional.

5. Jessen–Mercer’s inequality

A variant of Jensen’s inequality of Mercer’s type for superquadratic functions
and isotonic linear functionals is given in the following theorem.

Theorem 5.1 (See [2, Theorem 2.3]). Let L satisfy properties (L1), (L2), on
a nonempty set E, let ϕ : [0,∞) → R be a continuous superquadratic function,

and let 0 ≤ m < M < ∞. Assume that A is an isotonic linear functional on L

with A(1) = 1. If g ∈ L is such that m ≤ g(t) ≤ M for all t ∈ E and such that

ϕ(g), ϕ(m+M − g), (M − g)ϕ(g −m), (g −m)ϕ(M − g), ϕ (|g −A(g)|) ∈ L,

then we have

ϕ(m+M −A(g)) ≤ ϕ(m) + ϕ(M)−A (ϕ(g))

−
2

M −m
A ((g −m)ϕ(M − g) + (M − g)ϕ(g −m))

−A(ϕ(|g −A(g)|)).
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If the function ϕ is subquadratic, then the above inequality is reversed.

Next, we state the time scales version of Jensen’s inequality of Mercer’s type
for superquadratic functions and isotonic linear functionals which we will call
the Jessen–Mercer inequality for superquadratic functions on time scales.

Theorem 5.2. Let a, b ∈ T. Let ϕ : [0,∞) → R be a continuous superquadratic

function and 0 ≤ m < M < ∞. If g : [a, b]T → [m,M ] is an rd-continuous

function, then

(b − a)ϕ

(

m+M −
1

b− a

∫ b

a

g(t)∆t

)

≤ (ϕ(m) + ϕ(M)) (b − a)−

∫ b

a

ϕ(g(t))∆t

−
2

M −m

∫ b

a

[(g(t)−m)ϕ(M − g(t)) + (M − g(t))ϕ(g(t)−m)]∆t

−

∫ b

a

[

ϕ

(∣

∣

∣

∣

∣

g(t)−
1

b − a

∫ b

a

g(s)∆s

∣

∣

∣

∣

∣

)]

∆t.

Proof. The result follows from Theorem 2.6, with A there replaced by

A(f) =
1

b− a

∫ b

a

f(t)∆t,

and Theorem 5.1. �

6. Converse of Jensen’s inequality

In the following theorem, a functional version of the converse of Jensen’s
inequality for superquadratic functions is recalled.

Theorem 6.1 (See [8, Theorem 15]). Let L satisfy conditions (L1), (L2) and

A satisfy conditions (A1) and (A2) on a nonempty set E. Let k ∈ L be a

nonnegative function. Suppose that ϕ : [0,∞) → R is a superquadratic function.

Then for every f ∈ L, f : E → [m,M ] ⊆ [0,∞) such that kf, k(ϕ ◦ f) ∈ L, we

have

A(kϕ(f)) + ∆c ≤
MA(k)−A(kf)

M −m
ϕ(m) +

A(kf)−mA(k)

M −m
ϕ(M),

where

∆c =
1

M −m
A((Mk − kf)ϕ(f −m · 1) + (kf −mk)ϕ(M · 1− f)).

Now, we give a converse of Jensen’s inequality for superquadratic functions
on time scales.
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Theorem 6.2. Suppose a, b ∈ T and ϕ : [0,∞) → R is a superquadratic

function. Then for every f : [a, b]κ
T
→ [m,M ] ⊆ [0,∞) such that f, ϕ ◦ f ∈ Crd,

we have

(11)
∫ b

a

ϕ(f(t))∆t+R≤
M(b− a)−

∫ b

a
f(s)∆s

M −m
ϕ(m)+

∫ b

a
f(s)∆s−m(b− a)

M −m
ϕ(M),

where

R =
1

M −m

∫ b

a

[(M − f(t))ϕ(f(t)−m) + (f(t)−m)ϕ(M − f(t))]∆t.

Proof. Inequality (11) follows directly from Theorem 2.6 and Theorem 6.1 with
k(t) = 1 for all t ∈ [a, b]κ

T
. �

7. Slater’s inequality

A functional Slater type inequality for superquadratic functions, which gives
another estimate of the expression A(ϕ(f)), is given next.

Theorem 7.1 (See [8, Theorem 17]). Let L satisfy conditions (L1), (L2) and

A satisfy conditions (A1) and (A2) on a nonempty set E. Suppose that ϕ :
[0,∞) → R is a superquadratic function, C is as in Definition 1.6, and k, f ∈ L

are nonnegative functions such that kϕ(f), kC(f), kfC(f), kϕ (|f −M · 1|) ∈
L. If

M =
A(kfC(f))

A(kC(f))
≥ 0,

then

A(kϕ(f)) ≤ ϕ(M)A(k) −A(kϕ(|f −M · 1|)).

Now, we can state the Slater type inequality for superquadratic functions
on time scales.

Theorem 7.2. Suppose a, b ∈ T, ϕ : [0,∞) → R is a superquadratic function,

and C is as in Definition 1.6. Let f : [a, b]κ
T
→ [0,∞) and f, ϕ, C ∈ Crd. If C

is a nonnegative function, then

(12)

∫ b

a

ϕ(f(t))∆t ≤ ϕ(M)(b − a)−

∫ b

a

ϕ (|f(t)−M |)∆t,

where

M =

∫ b

a
f(t)C(f(t))∆t
∫ b

a
C(f(t))∆t

.

Proof. Inequality (12) follows directly from Theorem 2.6 and Theorem 7.1 with
k(t) = 1 for all t ∈ [a, b]κ

T
. �
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8. Hermite–Hadamard’s inequality

In this section, using the properties of superquadratic functions, we refine
the Hermite–Hadamard inequality for time scales as given in [11, Theorem 3.9].

For proving the Hermite–Hadamard inequality on time scales, a delta inte-

gral of the form
∫ b

a
t∆t must be evaluated. For an arbitrary time scale, it is

known that an antiderivative of 0 is 1, an antiderivative of 1 is t, but it is not
possible to find a closed formula of an antiderivative of t. More details on that
subject can be found in [10, Section 1.6].

Using the basics of the time scale calculus and the combined dynamic de-
rivative (so-called ♦α derivative), in [11] it is shown that for all time scales T
and all α ∈ [0, 1], we have

(13) xα :=
1

b− a

∫ b

a

t♦αt ∈ [a, b].

Also, the Hermite–Hadamard inequality for time scales is given as follows.

Theorem 8.1 (See [11, Theorem 3.9]). Let T be a time scale and a, b ∈ T. Let

f : [a, b] → R be a continuous convex function. Then

f(xα) ≤
1

b− a

∫ b

a

f(t)♦αt ≤
b− xα

b− a
f(a) +

xα − a

b− a
f(b).

As the diamond-α derivative reduces to the ∆-derivative for α = 1, using
the above results from [11] and the results given in Theorem 2.5 and Theorem
6.2, we can now state the Hermite–Hadamard inequality for superquadratic
functions on time scales.

Theorem 8.2. Let T be a time scale and a, b ∈ T. Suppose ϕ : [0,∞) → R is

a continuous superquadratic function. Then

ϕ(x̄) +
1

b− a

∫ b

a

ϕ(|t− x̄|)∆t(14)

≤
1

b− a

∫ b

a

ϕ(t)∆t

≤
bϕ(a)− aϕ(b)

b− a
+

ϕ(b)− ϕ(a)

b− a
x̄

−
1

(b− a)2

∫ b

a

[(b− t)ϕ(t − a) + (t− a)ϕ(b − t)]∆t,

where

x̄ =
1

b− a

∫ b

a

t∆t.

Proof. The left-hand side of (14) follows from the refinement of Jensen’s in-
equality on time scales given in inequality (3) of Theorem 2.5, taking f(t) = t

for all t ∈ [a, b]κ
T
, and using (13) for α = 1. To prove the right-hand side of
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(14), it suffices to put m = a, M = b, and f(t) = t for all t ∈ [a, b]κ
T
in the

converse of Jensen’s inequality for superquadratic functions on time scales as
given in inequality (11) of Theorem 6.2. �

Remark 8.3. The same result, i.e., inequality (14), can be obtained using the
considerations demonstrated in the previous sections. Namely, joining the in-
equalities established in Theorem 2.3 and Theorem 6.1, the Hermite–Hadamard
type inequality can be written out for superquadratic functions and isotonic
linear functionals. Taking in such an inequality f(t) = t, m = a, M = b, k = 1
and replacing the functional A with the delta integral from a to b gives us
exactly inequality (14).

Remark 8.4. In the case when ϕ is a nonnegative superquadratic function and
therefore (by Lemma 1.7) a convex one too, the result of Theorem 8.2 refines
the result given in Theorem 8.1 because, according to Theorem 2.6, the delta
integral satisfies property (A2) of being an isotonic functional.
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moyennes, Acta Math. 30 (1906), no. 1, 175–193.
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