• Title/Summary/Keyword: Gut microbiota

Search Result 278, Processing Time 0.032 seconds

Differences in swine gut microbiota in southern region of Republic of Korea (한국 남부 지역별 돼지 장내 미생물생태 비교분석)

  • Kim, Jungman;Guevarra, Robin B.;Nguyen, Son G.;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.81-85
    • /
    • 2015
  • Since the banning of antibiotic growth promoters (AGPs), the death of livestock has been increased, thus there is a strong demand for AGP-alternatives. Modulation of gut microbiota has been reported to affect host physiological functions and suggested to be a novel approach for developing AGP-alternatives. However, little has been understood about livestock gut microbiota compared to that of humans. We conducted preliminary study provide fundamental information regarding to regional differences in swine gut microbiota. Swine fecal samples were obtained from farms in Jeju (n=40), Gwangju (n=28), and Haenam (n=30). MiSeq was used to sequence 16S rRNA V4 region, and Mothur pipeline (Schloss et al., 2009) was used for data processing. A total of 5,642,125 reads were obtained and 3,868,143 reads were remained after removing erroneous reads. Analysis of taxonomic composition at the phylum level indicated greater abundance of Firmicutes among Jeju swine, and cluster analysis of distribution of operational taxonomic units also showed regional differences among swine gut microbiota. In addition, correlation analysis between non-metric multidimensional scaling and abundance of phyla suggested that the phyla Actinobacter, Verrucomicrobia, Firmicutes, and Fibrobacteres were driving factors for the regional differences. Livestock gut microbiota may be affected by diet and practices in farms. Our results indicated significant regional differences in swine gut microbiota, suggesting that future livestock gut microbiota studies should be designed with the regional differences in mind.

Comparison of Gut Microbiota between Lean and Obese Adult Thai Individuals

  • Jinatham, Vasana;Kullawong, Niwed;Kespechara, Kongkiat;Gentekaki, Eleni;Popluechai, Siam
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.277-287
    • /
    • 2018
  • Current reports suggest that obesity is a serious global health issue. Emerging evidence has predicted strong links between obesity and the human gut microbiota. However, only a few such studies have been conducted in Asia, and the gut microbiota of lean and obese adult Asians remains largely unexplored. Here, we investigated the potential relationship between gut microbiota, body massindex (BMI), and metabolic parameters in adults from Thailand, where obesity is increasing rapidly. Fecal and blood samples were collected from 42 volunteers who were allocated into lean, overweight, and obese groups. The fecal microbiota was examined by quantitative PCR analysis. Bacteroidetes, Firmicutes, and Staphylococcus spp. and methanogens were most abundant in lean volunteers. Overweight volunteers majorly harbored Christensenella minuta and Akkermansia muciniphila, ${\gamma}-Proteobacteria$, and bacteria belonging to the genus Ruminococcus. Methanogens and bacteria belonging to the phylum Bacteroidetes were negatively correlated with adiposity markers (BMI and waist circumference), but positive correlated with high-density lipoprotein, suggesting that they can be used as leanness markers. While some of our results agree with those of previous reports, results regarding the contributions of specific taxa to obesity were inconsistent. This is the first study to report the adult gut microbiota in Southeast Asian populations using molecular techniques and biochemical markers and provides a foundation for future studies in this field.

Alteration of the gut microbiota in post-weaned calves following recovery from bovine coronavirus-mediated diarrhea

  • Kwon, Min-Sung;Jo, Hee Eun;Lee, Jieun;Choi, Kyoung-Seong;Yu, Dohyeon;Oh, Yeon-su;Park, Jinho;Choi, Hak-Jong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.125-136
    • /
    • 2021
  • Bovine coronavirus (BCoV) is associated with severe diarrhea, dehydration, and depression, which result in significant economic damages in the dairy and beef cattle industries worldwide. However, differences in the gut microbiota structure and their correlations with differing physiological parameters between BCoV-infected calves with diarrhea and recovered calves are not well understood. In this study, fecal specimens were collected from 10 post-weaned calves, before and after 2 months of fluid therapy, and the samples were used for microbiota analysis. Following recovery, the alpha-diversity profiles (observed operational taxonomic units [OTUs], and Chao1, Shannon, and Simpson indices) changed significantly when compared with those of calves with diarrhea. Beta-diversity analysis exhibited significant differences in gut microbiota compositions between calves with diarrhea and those in the recovered state. The abundances of eight phyla and thirteen genera in feces changed markedly after restoration of BCoV diarrhea. In addition, our correlation study clearly revealed that increased abundances of the genera Caproiciproducens, Pseudoflavonifractor, and Oscillibacter negatively correlated with serum glucose, and phosphorus levels, but positively correlated with serum chloride in calves with diarrhea, whereas increased abundances of the genera Peptostreptococcaceae;Clostridium (Clostridium cluster XI), Intestinibacter, Cellulosilyticum, Ruminococcus, Romboutsia, Paeniclostridium, Clostridiaceae;Clostridium and Turicibacter in recovered calves showed the opposite pattern. These results suggest that structural changes of the gut microbiota after recovery from BCoV infection correlate with changes in physiological parameters. In conclusion, our data provide evidence of gut microbiota-composition changes and their correlations with the physical profiles of post-weaned calves, before and after fluid therapy for BCoV-related diarrhea.

A comprehensive longitudinal study of gut microbiota dynamic changes in laying hens at four growth stages prior to egg production

  • Seojin Choi;Eun Bae Kim
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1727-1737
    • /
    • 2023
  • Objective: The poultry industry is a primary source of animal protein worldwide. The gut microbiota of poultry birds, such as chickens and ducks, is critical in maintaining their health, growth, and productivity. This study aimed to identify longitudinal changes in the gut microbiota of laying hens from birth to the pre-laying stage. Methods: From a total of 80 Hy-Line Brown laying hens, birds were selected based on weight at equal intervals to collect feces (n = 20 per growth) and ileal contents (n = 10 per growth) for each growth stage (days 10, 21, 58, and 101). The V4 regions of the 16S rRNA gene were amplified after extracting DNA from feces and ileal contents. Amplicon sequencing was performed using Illumina, followed by analysis. Results: Microbial diversity increased with growth stages, regardless of sampling sites. Microbial community analysis indicated that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in the feces and ileal. The abundance of Lactobacillus was highest on day 10, and that of Escherichia-shigella was higher on day 21 than those at the other stages at the genus level (for the feces and ileal contents; p<0.05). Furthermore, Turicibacter was the most abundant genus after changing feed (for the feces and ileal contents; p<0.05). The fecal Ruminococcus torques and ileal Lysinibacillus were negatively correlated with the body weights of chickens (p<0.05). Conclusion: The gut microbiota of laying hens changes during the four growth stages, and interactions between microbiota and feed may be present. Our findings provide valuable data for understanding the gut microbiota of laying hens at various growth stages and future applied studies.

Leaky Gut in IBD: Intestinal Barrier-Gut Microbiota Interaction

  • Yu, Shunying;Sun, Yibin;Shao, Xinyu;Zhou, Yuqing;Yu, Yang;Kuai, Xiaoyi;Zhou, Chunli
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.825-834
    • /
    • 2022
  • Inflammatory bowel disease (IBD) is a global disease that is in increasing incidence. The gut, which contains the largest amount of lymphoid tissue in the human body, as well as a wide range of nervous system components, is integral in ensuring intestinal homeostasis and function. By interacting with gut microbiota, immune cells, and the enteric nervous system, the intestinal barrier, which is a solid barrier, protects the intestinal tract from the external environment, thereby maintaining homeostasis throughout the body. Destruction of the intestinal barrier is referred to as developing a "leaky gut," which causes a series of changes relating to the occurrence of IBD. Changes in the interactions between the intestinal barrier and gut microbiota are particularly crucial in the development of IBD. Exploring the leaky gut and its interaction with the gut microbiota, immune cells, and the neuroimmune system may help further explain the pathogenesis of IBD and provide potential therapeutic methods for future use.

Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota

  • Zhang, Xiaoyan;Chen, Sha;Duan, Feipeng;Liu, An;Li, Shaojing;Zhong, Wen;Sheng, Wei;Chen, Jun;Xu, Jiang;Xiao, Shuiming
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.334-343
    • /
    • 2021
  • Background: Gut microbiota mainly function in the biotransformation of primary ginsenosides into bioactive metabolites. Herein, we investigated the effects of three prebiotic fibers by targeting gut microbiota on the metabolism of ginsenoside Rb1 in vivo. Methods: Sprague Dawley rats were administered with ginsenoside Rb1 after a two-week prebiotic intervention of fructooligosaccharide, galactooligosaccharide, and fibersol-2, respectively. Pharmacokinetic analysis of ginsenoside Rb1 and its metabolites was performed, whilst the microbial composition and metabolic function of gut microbiota were examined by 16S rRNA gene amplicon and metagenomic shotgun sequencing. Results: The results showed that peak plasma concentration and area under concentration time curve of ginsenoside Rb1 and its intermediate metabolites, ginsenoside Rd, F2, and compound K (CK), in the prebiotic intervention groups were increased at various degrees compared with those in the control group. Gut microbiota dramatically responded to the prebiotic treatment at both taxonomical and functional levels. The abundance of Prevotella, which possesses potential function to hydrolyze ginsenoside Rb1 into CK, was significantly elevated in the three prebiotic groups (P < 0.05). The gut metagenomic analysis also revealed the functional gene enrichment for terpenoid/polyketide metabolism, glycolysis, gluconeogenesis, propanoate metabolism, etc. Conclusion: These findings imply that prebiotics may selectively promote the proliferation of certain bacterial stains with glycoside hydrolysis capacity, thereby, subsequently improving the biotransformation and bioavailability of primary ginsenosides in vivo.

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals

  • Patra, Amlan Kumar;Kar, Indrajit
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.211-247
    • /
    • 2021
  • Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.

Development of Gut Microbiota in a Mouse Model of Ovalbumin-induced Allergic Diarrhea under Sub-barrier System

  • Wang, Juan-Hong;Fan, Song-Wei;Zhu, Wei-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.545-551
    • /
    • 2013
  • This study aimed to present a mouse model of ovalbumin (OVA) induced allergic diarrhea under a sub-barrier system and investigate the development of gut microbiota in this model. Male BALB/c mice were systemically sensitized with OVA or sham-sensitized with saline, and followed by oral OVA intubation, leading to OVA-specific acute diarrhea. Compared with sham-sensitized mice, sera OVA-specific IgG1 and total IgE in OVA-sensitized mice were dramatically elevated, and the number of mast cells was greatly increased in the jejunum of the OVA-sensitized mice. Principle component analysis of the DGGE profile showed that samples from group of OVA-sensitized mice and group of sham-sensitized mice were scattered into two different regions. Real-time PCR analysis showed that the number of 16S rRNA gene copies of Lactobacillus in the colon of OVA-sensitized mice decreased significantly, while there was no significant difference in the number of Bifidobacterium and total bacteria. In conclusion, OVA-specific allergic diarrhea was successfully induced under a sub-barrier system, and changes of allergic reactions during induction was coupled with changes in gut microbiota, especially the number of colonic Lactobacillus, but the role of gut microbiota in the development of food allergic reactions needs to be further evaluated.

Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health - A review

  • Ali, Qasim;Ma, Sen;La, Shaokai;Guo, Zhiguo;Liu, Boshuai;Gao, Zimin;Farooq, Umar;Wang, Zhichang;Zhu, Xiaoyan;Cui, Yalei;Li, Defeng;Shi, Yinghua
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1461-1478
    • /
    • 2022
  • The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.

Insights into the Gut Microbiota of Freshwater Shrimp and Its Associations with the Surrounding Microbiota and Environmental Factors

  • Zhao, Yanting;Duan, Cuilan;Zhang, Xu-xiang;Chen, Huangen;Ren, Hongqiang;Yin, Ying;Ye, Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.946-956
    • /
    • 2018
  • The gut microbiota of aquatic animals plays a crucial role in host health through nutrient acquisition and outcompetition of pathogens. In this study, on the basis of the high-throughput sequencing of 16S rRNA gene amplicons, we examined the bacterial communities in the gut of freshwater shrimp (Macrobrachium nipponense) and in their living environments (sediment and pond water) and analyzed the effects of abiotic and biotic factors on the shrimp gut bacterial communities. High bacterial heterogeneity was observed in the freshwater shrimp gut samples, and the result indicated that both the surrounding bacterial community and water quality factors (particularly dissolved oxygen and temperature) could affect the shrimp gut bacterial community. Despite the observed heterogeneity, 57 genera, constituting 38-99% of the total genera in each of the 40 shrimp gut samples, were identified as the main bacterial population in the gut of M. nipponense. In addition, a high diversity and abundance of lactic acid bacteria (26 genera), which could play significant roles in the digestion process in shrimp, were observed in the shrimp gut samples. Overall, this study provides insights into the gut bacterial communities of freshwater shrimp and basic information for shrimp farming regarding the application of probiotics and disease prevention.