Browse > Article
http://dx.doi.org/10.5187/jast.2021.e48

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals  

Patra, Amlan Kumar (Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences)
Kar, Indrajit (Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences)
Publication Information
Journal of Animal Science and Technology / v.63, no.2, 2021 , pp. 211-247 More about this Journal
Abstract
Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.
Keywords
Heat stress; Gut microbiota; Oxidative status; Barrier integrity; Mucosal structure; Amelioration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang M, Lin X, Jiao H, Uyanga V, Zhao J, Wang X, et al. Mild heat stress changes the microbiota diversity in the respiratory tract and the cecum of layer-type pullets. Poult Sci. 2020;99:7015-26. https://doi.org/10.1016/j.psj.2020.09.024   DOI
2 Lee Y, Lee HY. Revisiting the bacterial phylum composition in metabolic diseases focused on host energy metabolism. Diabetes Metab J. 2020;44:658-67. https://doi.org/10.4093/dmj.2019.0220   DOI
3 Hu C, Yadnyavalkya P, Gong D, Yu T, Li J, Wu L, et al. Heat stress induced gut microbiota changes activate tlr4 / nf-κb signaling pathway contributing to inflammatory bowel disease in pigs. Res Sq. 2020:1-41. https://doi.org/10.21203/rs.2.21626/v1   DOI
4 Ibtisham F, Nawab A, Niu Y, Wang Z, Wu J, Xiao M, et al. The effect of ginger powder and Chinese herbal medicine on production performance, serum metabolites and antioxidant status of laying hens under heat-stress condition. J Therm Biol. 2019;81:20-4. https://doi.org/10.1016/j.jtherbio.2019.02.002   DOI
5 Mack LA, Felver-Gant JN, Dennis RL, Cheng HW. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult Sci. 2013;92:285-94. https://doi.org/10.3382/ps.2012-02589   DOI
6 Mignon-Grasteau S, Moreri U, Narcy A, Rousseau X, Rodenburg TB, Tixier-Boichard M, et al. Robustness to chronic heat stress in laying hens: a meta-analysis. Poult Sci. 2015;94:586-600. https://doi.org/10.3382/ps/pev028   DOI
7 Sahin N, Hayirli A, Orhan C, Tuzcu M, Komorowski JR, Sahin K. Effects of the supplemental chromium form on performance and metabolic profile in laying hens exposed to heat stress. Poult Sci. 2018;97:1298-305. https://doi.org/10.3382/ps/pex435   DOI
8 Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, Sa LRM, et al. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult Sci. 2010;89:1905-14. https://doi.org/10.3382/ps.2010-00812   DOI
9 Quinteiro-Filho WM, Calefi AS, Cruz DSG, Aloia TPA, Zager A, Astolfi-Ferreira CS, et al. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis. Vet Immunol Immunopathol. 2017;186:19-28. https://doi.org/10.1016/j.vetimm.2017.02.006   DOI
10 Gabler NK, Koltes D, Schaumberger S, Murugesan GR, Reisinger N. Diurnal heat stress reduces pig intestinal integrity and increases endotoxin translocation. Transl Anim Sci. 2018;2:1-10. https://doi.org/10.1093/tas/txx003   DOI
11 Mayorga EJ, Kvidera SK, Horst EA, Al-Qaisi M, Dickson MJ, Seibert JT, et al. Effects of zinc amino acid complex on biomarkers of gut integrity and metabolism during and following heat stress or feed restriction in pigs. J Anim Sci. 2018;96:4173-85. https://doi.org/10.1093/jas/sky293   DOI
12 Puchala R, Patra AK, Animut G, Sahlu T, Goetsch AL. Effects of feed restriction and realimentation on mohair fiber growth and tissue gain by growing Angora goats. Livest Sci. 2011;138:180-6. https://doi.org/10.1016/j.livsci.2010.12.022   DOI
13 Baumgard LH, Rhoads RP. Effects of heat stress on postabsorptive metabolism and energetics. Annu Rev Anim Biosci. 2013;1:311-37. https://doi.org/10.1146/annurev-animal-031412-103644   DOI
14 Johnson JS, Sapkota A, Lay DC. Rapid cooling after acute hyperthermia alters intestinal morphology and increases the systemic inflammatory response in pigs. J Appl Physiol. 2016;120:1249-59. https://doi.org/10.1152/japplphysiol.00685.2015   DOI
15 Lovatto PA, Sauvant D, Noblet J, Dubois S, van Milgen J. Effects of feed restriction and subsequent refeeding on energy utilization in growing pigs. J Anim Sci. 2006;84:3329-36. https://doi.org/10.2527/jas.2006-048   DOI
16 Pearce SC, Sanz Fernandez MV, Torrison J, Wilson ME, Baumgard LH, Gabler NK. Dietary organic zinc attenuates heat stress-induced changes in pig intestinal integrity and metabolism. J Anim Sci. 2015;93:4702-13. https://doi.org/10.2527/jas.2015-9018   DOI
17 Alhenaky A, Abdelqader A, Abuajamieh M, Al-Fataftah AR. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. J Therm Biol. 2017;70:9-14. https://doi.org/10.1016/j.jtherbio.2017.10.015   DOI
18 Choct M. Managing gut health through nutrition. Br Poult Sci. 2009;50:9-15. https://doi.org/10.1080/00071660802538632   DOI
19 Quinteiro-Filho WM, Rodrigues MV, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sa LRM, et al. Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary-adrenal axis activation. J Anim Sci. 2012;90:1986-94. https://doi.org/10.2527/jas.2011-3949   DOI
20 Pearce SC, Lonergan SM, Huff-Lonergan E, Baumgard LH, Gabler NK. Acute heat stress and reduced nutrient intake alter intestinal proteomic profile and gene expression in pigs. PLOS ONE. 2015;10:e0143099. https://doi.org/10.1371/journal.pone.0143099   DOI
21 Ruff J, Barros TL, Tellez G, Blankenship J, Lester H, Graham BD, et al. Research Note: evaluation of a heat stress model to induce gastrointestinal leakage in broiler chickens. Poult Sci. 2020;99:1687-92. https://doi.org/10.1016/j.psj.2019.10.075   DOI
22 Shakeri M, Cottrell JJ, Wilkinson S, Zhao W, Le HH, McQuade R, et al. Dietary betaine improves intestinal barrier function and ameliorates the impact of heat stress in multiple vital organs as measured by evans blue dye in broiler chickens. Animals. 2019;10:38. https://doi.org/10.3390/ani10010038   DOI
23 Sandner G, Mueller AS, Zhou X, Stadlbauer V, Schwarzinger B, Schwarzinger C, et al. Ginseng extract ameliorates the negative physiological effects of heat stress by supporting heat shock response and improving intestinal barrier integrity: evidence from studies with heat-stressed caco-2 cells, c. elegans and growing broilers. Molecules. 2020;25:835. https://doi.org/10.3390/molecules25040835   DOI
24 Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207-15. https://doi.org/10.1016/j.chom.2013.07.007   DOI
25 Santos RR, Awati A, Roubos-van den Hil PJ, Tersteeg-Zijderveld MHG, Koolmees PA, Fink-Gremmels J. Quantitative histo-morphometric analysis of heat-stress-related damage in the small intestines of broiler chickens. Avian Pathol. 2015;44:19-22. https://doi.org/10.1080/03079457.2014.988122   DOI
26 Becker CA, Collier RJ, Stone AE. Invited review: physiological and behavioral effects of heat stress in dairy cows. J Dairy Sci. 2020;103:6751-70. https://doi.org/10.3168/jds.2019-17929   DOI
27 Ratriyanto A, Mosenthin R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J Anim Physiol Anim Nutr. 2018;102:1634-50. https://doi.org/10.1111/jpn.12990   DOI
28 Saeed M, Babazadeh D, Naveed M, Arain MA, Hassan FU, Chao S. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review. Trop Anim Health Prod. 2017;49:1329-38. https://doi.org/10.1007/s11250-017-1355-z   DOI
29 Uyeno Y, Sekiguchi Y, Tajima K, Takenaka A, Kurihara M, Kamagata Y. An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe. 2010;16:27-33. https://doi.org/10.1016/j.anaerobe.2009.04.006   DOI
30 Heida FH, van Zoonen AGJF, Hulscher JBF, te Kiefte BJC, Wessels R, Kooi EMW, et al. A necrotizing enterocolitis-associated gut microbiota is present in the meconium: results of a prospective study. Clin Infect Dis Off Publ Infect Dis. 2016;62:863-70. https://doi.org/10.1093/cid/ciw016   DOI
31 Menconi A, Wolfenden AD, Shivaramaiah S, Terraes AJ, Urbano T, Kuttel J, et al. Effect of lactic acid bacteria probiotic culture for the treatment of Salmonella enterica serovar Heidelberg in neonatal broiler chickens and turkey poults. Poult Sci. 2011;90:561-5. https://doi.org/10.3382/ps.2010-01220   DOI
32 Nicola S, Amoruso A, Deidda F, Pane M, Allesina S, Mogna L, et al. Searching for the perfect homeostasis: five strains of Bifidobacterium longum from centenarians have a similar behavior in the production of cytokines. J Clin Gastroenterol. 2016;50:S126-30.   DOI
33 Serafini F, Strati F, Ruas-Madiedo P, Turroni F, Foroni E, Duranti S, et al. Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010. Anaerobe. 2013;21:9-17. https://doi.org/10.1016/j.anaerobe.2013.03.003   DOI
34 Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496-503. https://doi.org/10.1016/j.tibtech.2015.06.011   DOI
35 Zhang M, Zou XT, Li H, Dong XY, Zhao W. Effect of dietary γ-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens. Anim Sci J. 2012;83:141-7. https://doi.org/10.1111/j.1740-0929.2011.00939.x   DOI
36 Osman AM, Tanios NI. The effect of heat on the intestinal and pancreatic levels of amylase and maltase of laying hens and broilers. Comp Biochem Physiol A Physiol. 1983;75:563-7. https://doi.org/10.1016/0300-9629(83)90421-8   DOI
37 Ashraf S, Zaneb H, Yousaf MS, Ljaz A, Sohail MU, Muti S, et al. Effect of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress. J Anim Physiol Anim Nutr. 2013;97:68-73. https://doi.org/10.1111/jpn.12041   DOI
38 Abdelqader AM, Abuajamieh M, Hammad HM, Al-Fataftah ARA. Effects of dietary butyrate supplementation on intestinal integrity of heat-stressed cockerels. J Anim Physiol Anim Nutr. 2017;101:1115-21. https://doi.org/10.1111/jpn.12622   DOI
39 Quinteiro-Filho WM, Gomes AVS, Pinheiro ML, Ribeiro A, Ferraz-de-Paula V, Astolfi-Ferreira CS, et al. Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis. Avian Pathol. 2012;41:421-7. https://doi.org/10.1080/03079457.2012.709315   DOI
40 Mahesh MS, Mohanta RK, Patra AK. Probiotics in livestock and poultry nutrition and health. In: Goel G, Kumar A, editors. Advances in probiotics for sustainable food and medicine. Microorg Sustain. 2021:149-79. https://doi.org/10.1007/978-981-15-6795-7_7   DOI
41 Chen Z, Tang J, Sun YQ, Xie J. Protective effect of γ-aminobutyric acid on antioxidation function in intestinal mucosa of Wenchang chicken induced by heat stress. J Anim Plant Sci. 2013;23:1634-41.
42 Song J, Jiao LF, Xiao K, Luan ZS, Hu CH, Shi B, et al. Cello-oligosaccharide ameliorates heat stress-induced impairment of intestinal microflora, morphology and barrier integrity in broilers. Anim Feed Sci Technol. 2013;185:175-81. https://doi.org/10.1016/j.anifeedsci.2013.08.001   DOI
43 Al-Fataftah AR, Abdelqader A. Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Anim Feed Sci Technol. 2014;198:279-85. https://doi.org/10.1016/j.anifeedsci.2014.10.012   DOI
44 Cheng YF, Chen YP, Chen R, Su Y, Zang RQ, He QF, et al. Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers. Poult Sci. 2019;98:4767-76. https://doi.org/10.3382/ps/pez192   DOI
45 Abdelqader A, Al-Fataftah AR. Effect of dietary butyric acid on performance, intestinal morphology, microflora composition and intestinal recovery of heat-stressed broilers. Livest Sci. 2016;183:78-83. https://doi.org/10.1016/j.livsci.2015.11.026   DOI
46 Chen Z, Xie J, Wang B, Tang J. Effect of γ-aminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heat-stressed chicken. Poult Sci. 2014;93:2490-500. https://doi.org/10.3382/ps.2013-03398   DOI
47 Chen Z, Xie J, Hu MY, Tang J, Shao ZF, Li MH. Protective effects of γ -aminobutyric acid (GABA) on the small intestinal mucosa in heat-stressed wenchang chicken. J Anim Plant Sci. 2015;25:78-87.
48 Cui Y, Gu X. Proteomic changes of the porcine small intestine in response to chronic heat stress. J Mol Endocrinol. 2015;55:277-93. https://doi.org/10.1530/JME-15-0161   DOI
49 Sanz Fernandez MV, Pearce SC, Gabler NK, Patience JF, Wilson ME, Socha MT, et al. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs. Animal. 2014;8:43-50. https://doi.org/10.1017/S1751731113001961   DOI
50 Sohail MU, Hume ME, Byrd JA, Nisbet DJ, Ljaz A, Sohail A, et al. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult Sci. 2012;91:2235-40. https://doi.org/10.3382/ps.2012-02182   DOI
51 Sanz Fernandez MV, Pearce SC, Mani V, Gabler NK, Metzger L, Patience JF, et al. Effects of dairy products on intestinal integrity in heat-stressed pigs. Temperature. 2014;1:128-34. https://doi.org/10.4161/temp.29561   DOI
52 Wu QJ, Liu N, Wu XH, Wang GY, Lin L. Glutamine alleviates heat stress-induced impairment of intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers. Poult Sci. 2018;97:2675-83. https://doi.org/10.3382/ps/pey123   DOI
53 Yu J, Yin P, Liu F, Cheng G, Guo K, Lu A, et al. Effect of heat stress on the porcine small intestine: a morphological and gene expression study. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:119-28. https://doi.org/10.1016/j.cbpa.2010.01.008   DOI
54 Yi D, Hou Y, Tan L, Liao M, Xie J, Wang L, et al. N-acetylcysteine improves the growth performance and intestinal function in the heat-stressed broilers. Anim Feed Sci Technol. 2016;220:83-92. https://doi.org/10.1016/j.anifeedsci.2016.07.014   DOI
55 Zhu Y, Liao X, Lu L, Li W, Zhang L, Ji C, et al. Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures. Oncotarget. 2017;8:19814-24. https://doi.org/10.18632/oncotarget.15057   DOI
56 Song J, Xiao K, Ke YL, Jiao LF, Hu CH, Diao QY, et al. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult Sci. 2014;93:581-8. https://doi.org/10.3382/ps.2013-03455   DOI
57 Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799-809. https://doi.org/10.1038/nri2653   DOI
58 Wallin RPA, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 2002;23:130-5. https://doi.org/10.1016/s1471-4906(01)02168-8   DOI
59 Zhang C, Zhao XH, Yang L, Chen XY, Jiang RS, Jin SH, et al. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult Sci. 2017;96:4325-32. https://doi.org/10.3382/ps/pex266   DOI
60 Liao X, Li W, Zhu Y, Zhang L, Lu L, Lin X, et al. Effects of environmental temperature and dietary zinc on egg production performance, egg quality and antioxidant status and expression of heat-shock proteins in tissues of broiler breeders. Br J Nutr. 2018;120:3-12. https://doi.org/10.1017/S0007114518001368   DOI
61 Zhu Y, Lu L, Liao X, Li W, Zhang L, Ji C, et al. Maternal dietary manganese protects chick embryos against maternal heat stress via epigenetic-activated antioxidant and anti-apoptotic abilities. Oncotarget. 2017;8:89665-80. https://doi.org/10.18632/oncotarget.20804   DOI
62 Ghazi Sh, Habibian M, Moeini MM, Abdolmohammadi AR. Effects of different levels of organic and inorganic chromium on growth performance and immunocompetence of broilers under heat stress. Biol Trace Elem Res. 2012;146:309-17. https://doi.org/10.1007/s12011-011-9260-1   DOI
63 Sahin N, Tuzcu M, Orhan C, Onderci M, Eroksuz Y, Sahin K. The effects of vitamin C and E supplementation on heat shock protein 70 response of ovary and brain in heat-stressed quail. Br Poult Sci. 2009;50:259-65. https://doi.org/10.1080/00071660902758981   DOI
64 Slimen IB, Najar T, Ghram A, Abdrrabba M. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr. 2016;100:401-12. https://doi.org/10.1111/jpn.12379   DOI
65 Rea K, Dinan TG, Cryan JF. The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress. 2016;4:23-33. https://doi.org/10.1016/j.ynstr.2016.03.001   DOI
66 Cholewinska P, Gorniak W, Wojnarowski K. Impact of selected environmental factors on microbiome of the digestive tract of ruminants. BMC Vet Res. 2021;17:25. https://doi.org/10.1186/s12917-021-02742-y   DOI
67 Burkholder KM, Thompson KL, Einstein ME, Applegate TJ, Patterson JA. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poult Sci. 2008;87:1734-41. https://doi.org/10.3382/ps.2008-00107   DOI
68 Kadzere CT, Murphy MR, Silanikove N, Maltz E. Heat stress in lactating dairy cows: a review. Livest Prod Sci. 2002;77:59-91. https://doi.org/10.1016/S0301-6226(01)00330-X   DOI
69 Polsky L, von Keyserlingk MAG. Invited review: effects of heat stress on dairy cattle welfare. J Dairy Sci. 2017;100:8645-57. https://doi.org/10.3168/jds.2017-12651   DOI
70 Domingo MC, Yansouni C, Gaudreau C, Lamothe S, Levesque S, Tremblay C, et al. Cloacibacillus sp., a potential human pathogen associated with bacteremia in Quebec and New Brunswick. J Clin Microbiol. 2015;53:3380-3. https://doi.org/10.1128/JCM.01137-15   DOI
71 Minamoto Y, Otoni CC, Steelman SM, Buyukleblebici O, Steiner JM, Jergens AE, et al. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes. 2015;6:33-47. https://doi.org/10.1080/19490976.2014.997612   DOI
72 Berkhoff HA. Clostridium colinum sp. nov., nom. rev., the causative agent of ulcerative enteritis (quail disease) in quail, chickens, and pheasants. Int J Syst Evol Microbiol. 1985;35:155-9. https://doi.org/10.1099/00207713-35-2-155   DOI
73 Malinen E, Krogius-Kurikka L, Lyra A, Nikkila J, Jaaskelainen A, Rinttila T, et al. Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World J Gastroenterol. 2010;16:4532-40. https://doi.org/10.3748/wjg.v16.i36.4532   DOI
74 Peterson VL, Jury NJ, Cabrera-Rubio R, Draper LA, Crispe F, Cotter PD, et al. Drunk bugs: chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice. Behav Brain Res. 2017;323:172-6. https://doi.org/10.1016/j.bbr.2017.01.049   DOI
75 Suchodolski JS, Foster ML, Sohail MU, Leutenegger C, Queen EV, Steiner JM, et al. The fecal microbiome in cats with diarrhea. PLOS ONE. 2015;10:e0127378. https://doi.org/10.1371/journal.pone.0127378   DOI
76 Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria: from metagenomic species to metabolic features. Environ Microbiol. 2017;19:835-41. https://doi.org/10.1111/1462-2920.13658   DOI
77 Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJM, Thiele I. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol. 2014;196:3289-302. https://doi.org/10.1128/JB.01780-14   DOI
78 Goo D, Kim JH, Park GH, Delos Reyes JB, Kil DY. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals. 2019;9:107. https://doi.org/10.3390/ani9030107   DOI
79 Ebeid TA, Suzuki T, Sugiyama T. High ambient temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poult Sci. 2012;91:2282-7. https://doi.org/10.3382/ps.2011-01898   DOI
80 Garriga C, Hunter RR, Amat C, Planas JM, Mitchell MA, Moreto M. Heat stress increases apical glucose transport in the chicken jejunum. Am J Physiol Regul Integr Comp Physiol. 2006;290:R195-201. https://doi.org/10.1152/ajpregu.00393.2005   DOI
81 Gu XH, Hao Y, Wang XL. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. intestinal oxidative stress. Poult Sci. 2012;91:790-9. https://doi.org/10.3382/ps.2011-01628   DOI
82 Koch F, Thom U, Albrecht E, Weikard R, Nolte W, Kuhla B, et al. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc Natl Acad Sci. 2019;116:10333-8. https://doi.org/10.1073/pnas.1820130116   DOI
83 Kpodo KR, Duttlinger AW, Radcliffe JS, Johnson JS. Time course determination of the effects of rapid and gradual cooling after acute hyperthermia on body temperature and intestinal integrity in pigs. J Therm Biol. 2020;87:102481. https://doi.org/10.1016/j.jtherbio.2019.102481   DOI
84 Li Q, Wan G, Peng C, Xu L, Yu Y, Li L, et al. Effect of probiotic supplementation on growth performance, intestinal morphology, barrier integrity, and inflammatory response in broilers subjected to cyclic heat stress. Anim Sci J Nihon Chikusan Gakkaiho. 2020;91:e13433. https://doi.org/10.1111/asj.13433   DOI
85 Bello AU, Sulaiman JA, Aliyu MS. Acute phase protein mRNA expressions and enhancement of antioxidant defense system in black-meated Silkie fowls supplemented with clove (Eugenia caryophyllus) extracts under the influence of chronic heat stress. J Anim Sci Technol. 2016;58:39. https://doi.org/10.1186/s40781-016-0122-4   DOI
86 De Maio A. Heat shock proteins: facts, thoughts, and dreams. Shock. 1999;11:1-12. https://doi.org/10.1097/00024382-199901000-00001   DOI
87 Wang L, Zhu F, Yang H, Li J, Li Y, Ding X, et al. Epidermal growth factor improves intestinal morphology by stimulating proliferation and differentiation of enterocytes and mTOR signaling pathway in weaning piglets. Sci China Life Sci. 2020;63:259-68. https://doi.org/10.1007/s11427-018-9519-6   DOI
88 Patra AK. Influence of plant bioactive compounds on intestinal epithelial barrier in poultry. Mini Rev Med Chem. 2020;20:566-77. https://doi.org/10.2174/1389557520666191226111405   DOI
89 Patra AK, Amasheh S, Aschenbach JR. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds: a comprehensive review. Crit Rev Food Sci Nutr. 2019;59:3237-66. https://doi.org/10.1080/10408398.2018.1486284   DOI
90 Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals. 2017;11:2. https://doi.org/10.3390/ph11010002   DOI
91 Habibian M, Sadeghi G, Ghazi S, Moeini MM. Selenium as a feed supplement for heat-stressed poultry: a review. Biol Trace Elem Res. 2015;165:183-93. https://doi.org/10.1007/s12011-015-0275-x   DOI
92 Jimoh OA, Ayedun ES, Oyelade WA, Oloruntola OD, Daramola OT, Ayodele SO, et al. Protective effect of soursop (Annona muricata Linn.) juice on oxidative stress in heat stressed rabbits. J Anim Sci Technol. 2018;60:28. https://doi.org/10.1186/s40781-018-0186-4   DOI
93 Xie Y, Chen Z, Wang D, Chen G, Sun X, He Q, et al. Effects of fermented herbal tea residues on the intestinal microbiota characteristics of holstein heifers under heat stress. Front Microbiol. 2020;11:1014.https://doi.org/10.3389/fmicb.2020.01014   DOI
94 Habibi R, Sadeghi GH, Karimi A. Effect of different concentrations of ginger root powder and its essential oil on growth performance, serum metabolites and antioxidant status in broiler chicks under heat stress. Br Poult Sci. 2014;55:228-37. https://doi.org/10.1080/00071668.2014.887830   DOI
95 Chauhan SS, Celi P, Leury BJ, Clarke IJ, Dunshea FR. Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J Anim Sci. 2014;92:3364-74. https://doi.org/10.2527/jas.2014-7714   DOI
96 Zhu YW, Lu L, Li WX, Zhang LY, Ji C, Lin X, et al. Effect of dietary manganese on antioxidant status and expression levels of heat-shock proteins and factors in tissues of laying broiler breeders under normal and high environmental temperatures. Br J Nutr. 2015;114:1965-74. https://doi.org/10.1017/S0007114515003803   DOI
97 Borda-Molina D, Seifert J, Camarinha-Silva A. Current perspectives of the chicken gastrointestinal tract and its microbiome. Comput Struct Biotechnol J. 2018;16:131-9. https://doi.org/10.1016/j.csbj.2018.03.002   DOI
98 Xie J, Tang L, Lu L, Zhang L, Xi L, Liu HC, et al. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PLOS ONE. 2014;9:e102204. https://doi.org/10.1371/journal.pone.0102204   DOI
99 Zhang WW, Kong LN, Zhang XQ, Luo QB. Alteration of HSF3 and HSP70 mRNA expression in the tissues of two chicken breeds during acute heat stress. Genet Mol Res. 2014;13:9787-94. https://doi.org/10.4238/2014.November.27.6   DOI
100 Uerlings J, Song ZG, Hu XY, Wang SK, Lin H, Buyse J, et al. Heat exposure affects jejunal tight junction remodeling independently of adenosine monophosphate-activated protein kinase in 9-day-old broiler chicks. Poult Sci. 2018;97:3681-90. https://doi.org/10.3382/ps/pey229   DOI
101 Varasteh S, Braber S, Akbari P, Garssen J, Fink-Gremmels J. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLOS ONE. 2015;10:e0138975. https://doi.org/10.1371/journal.pone.0138975   DOI
102 Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals. 2013;3:356-69. https://doi.org/10.3390/ani3020356   DOI
103 Renaudeau D, Collin A, Yahav S, de Basilio V, Gourdine JL, Collier RJ. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal. 2012;6:707-28. https://doi.org/10.1017/S1751731111002448   DOI
104 Yadav S, Jha R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J Anim Sci Biotechnol. 2019;10:2. https://doi.org/10.1186/s40104-018-0310-9   DOI
105 Wang XJ, Feng JH, Zhang MH, Li XM, Ma DD, Chang SS. Effects of high ambient temperature on the community structure and composition of ileal microbiome of broilers. Poult Sci. 2018;97:2153-8.https://doi.org/10.3382/ps/pey032   DOI
106 Le Sciellour M, Zemb O, Hochu I, Riquet J, Gilbert H, Giorgi M, et al. Effect of chronic and acute heat challenges on fecal microbiota composition, production, and thermoregulation traits in growing pigs. J Anim Sci. 2019;97:3845-58. https://doi.org/10.1093/jas/skz222   DOI
107 Shang Y, Kumar S, Oakley B, Kim WK. Chicken gut microbiota: importance and detection technology. Front Vet Sci. 2018;5:254. https://doi.org/10.3389/fvets.2018.00254   DOI
108 He J, He Y, Pan D, Cao J, Sun Y, Zeng X. Associations of gut microbiota with heat stress-induced changes of growth, fat deposition, intestinal morphology, and antioxidant capacity in ducks. Front Microbiol. 2019;10:903. https://doi.org/10.3389/fmicb.2019.00903   DOI
109 Xing S, Wang X, Diao H, Zhang M, Zhou Y, Feng J. Changes in the cecal microbiota of laying hens during heat stress is mainly associated with reduced feed intake. Poult Sci. 2019;98:5257-64. https://doi.org/10.3382/ps/pez440   DOI
110 Liu G, Zhu H, Ma T, Yan Z, Zhang Y, Geng Y, et al. Effect of chronic cyclic heat stress on the intestinal morphology, oxidative status and cecal bacterial communities in broilers. J Therm Biol. 2020;91:102619. https://doi.org/10.1016/j.jtherbio.2020.102619   DOI
111 He J, Guo H, Zheng W, Xue Y, Zhao R, Yao W. Heat stress affects fecal microbial and metabolic alterations of primiparous sows during late gestation. J Anim Sci Biotechnol. 2019;10:84. https://doi.org/10.1186/s40104-019-0391-0   DOI
112 Xiong Y, Yi H, Wu Q, Jiang Z, Wang L. Effects of acute heat stress on intestinal microbiota in grow-finishing pigs, and associations with feed intake and serum profile. J Appl Microbiol. 2020;128:840-52. https://doi.org/10.1111/jam.14504   DOI
113 Sommer F, Backhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol. 2013;11:227-38. https://doi.org/10.1038/nrmicro2974   DOI
114 Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5:627-40. https://doi.org/10.3390/d5030627   DOI
115 Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol. 2014;6:703-13. https://doi.org/10.1093/gbe/evu050   DOI
116 Contreras-Jodar A, Nayan NH, Hamzaoui S, Caja G, Salama AAK. Heat stress modifies the lactational performances and the urinary metabolomic profile related to gastrointestinal microbiota of dairy goats. PLOS ONE. 2019;14:e0202457. https://doi.org/10.1371/journal.pone.0202457   DOI
117 Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci. 2011;108:16050-5. https://doi.org/10.1073/pnas.1102999108   DOI
118 Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37:1885-95. https://doi.org/10.1016/j.psyneuen.2012.03.024   DOI
119 Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: a review. J Sport Health Sci. 2017;6:179-97. https://doi.org/10.1016/j.jshs.2016.05.001   DOI
120 Shi D, Bai L, Qu Q, Shanshan Z, Meimei Y, Shining G, et al. Impact of gut microbiota structure in heat-stressed broilers. Poult Sci. 2019;98:2405-13. https://doi.org/10.3382/ps/pez026   DOI
121 Chen S, Wang J, Peng D, Li G, Chen J, Gu X. Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows. Sci Rep. 2018;8:14606. https://doi.org/10.1038/s41598-018-32886-1   DOI
122 Zhu L, Liao R, Wu N, Zhu G, Yang C. Heat stress mediates changes in fecal microbiome and functional pathways of laying hens. Appl Microbiol Biotechnol. 2019;103:461-72. https://doi.org/10.1007/s00253-018-9465-8   DOI
123 Patra AK. An overview of antimicrobial properties of different classes of phytochemicals. In: Patra AK, editor. Dietary phytochemicals and microbes. Dordrecht, Netherlands: Springer; 2012. p. 1-32.
124 Alhenaky A, Abdelqader A, Abuajamieh M, Al-Fataftah AR. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. J Therm Biol. 2017;70:9-14. https://doi.org/10.1016/j.jtherbio.2017.10.015   DOI
125 Hajati H, Hassanabadi A, Golian AG, Nassiri-Moghaddam H, Nassiri MR. The effect of grape seed extract and vitamin C feed supplements on carcass characteristics, gut morphology and ileal microflora in broiler chickens exposed to chronic heat stress. Iranian J Appl Anim Sci. 2015;5:155-65.
126 Humam AM, Loh TC, Foo HL, Samsudin AA, Mustapha NM, Zulkifli I, et al. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals. 2019;9:644. https://doi.org/10.3390/ani9090644   DOI
127 Patra A. Interactions of plant bioactives with nutrient transport systems in gut of livestock. Indian J Anim Health. 2018;57:125-36. https://doi.org/10.36062/ijah.57.2.2018.125-36   DOI
128 Hasheimi SR, Zulkifli I, Somchit MN, Zunita Z, Loh TC, Soleimani, et al. Dietary supplementation of Zingiber officinale and Zingiber zerumbet to heat-stressed broiler chickens and its effect on heat shock protein 70 expression, blood parameters and body temperature. J Anim Physiol Anim Nutr. 2013;97:632-8. https://doi.org/10.1111/j.1439-0396.2012.01302.x   DOI
129 Tuzcu M, Sahin N, Karatepe M, Cikim G, Kilinc U, Sahin K. Epigallocatechin-3-gallate supplementation can improve antioxidant status in stressed quail. Br Poult Sci. 2008;49:643-8. https://doi.org/10.1080/00071660802298336   DOI
130 Liu F, Yin J, Du M, Pan P, Xu J, Zhu J, et al. Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling. J Anim Sci. 2009;87:1941-9. https://doi.org/10.2527/jas.2008-1624   DOI
131 Liu L, Fu C, Yan M, Xie H, Li S,Yu Q, et al. Resveratrol modulates intestinal morphology and HSP70/90, NF-κB and EGF expression in the jejunal mucosa of black-boned chickens on exposure to circular heat stress. Food Funct. 2016;7:1329-38. https://doi.org/10.1039/c5fo01338k   DOI
132 Liu F, Cottrell JJ, Furness JB, Rivera LR, Kelly FW, Wijesiriwardana U, et al. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp Physiol. 2016;101:801-10. https://doi.org/10.1113/EP085746   DOI
133 Porto ML, Givisiez PEN, Saraiva EP, Costa FGP, Moreira Filho ALB, Andrade MSF, et al. Glutamic acid improves body weight gain and intestinal morphology of broiler chickens submitted to heat stress. Braz J Poult Sci. 2015;17:355-62. https://doi.org/10.1590/1516-635x1703355-362   DOI
134 Pearce SC, Mani V, Boddicker RL, Johnson JS, Weber TE, Ros JW, et al. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLOS ONE. 2013;8:e70215. https://doi.org/10.1371/journal.pone.0070215   DOI
135 Pearce SC, Mani V, Weber TE, Rhoads RP, Patience JF, Baumgard LH, et al. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs. J Anim Sci. 2013;91:5183-93. https://doi.org/10.2527/jas.2013-6759   DOI
136 Pearce SC, Sanz-Fernandez MV, Hollis JH, Baumgard LH, Gabler NK. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs. J Anim Sci. 2014;92:5444-54. https://doi.org/10.2527/jas.2014-8407   DOI
137 Hao Y, Gu XH, Wang XL. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 1. intestinal structure and digestive function. Poult Sci. 2012;91:781-9. https://doi.org/10.3382/ps.2011-01627   DOI
138 Al Wakeel RA, Shukry M, Abdel Azeez A, Mahmoud S, Saad MF. Alleviation by gamma amino butyric acid supplementation of chronic heat stress-induced degenerative changes in jejunum in commercial broiler chickens. Stress. 2017;20:562-72. https://doi.org/10.1080/10253890.2017.1377177   DOI
139 Sun X, Zhang H, Sheikhahmadi A, Wang Y, Jiao H, Lin H, et al. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). Int J Biometeorol. 2015;59:127-35. https://doi.org/10.1007/s00484-014-0829-1   DOI
140 Onderci M, Sahin K, Sahin N, Gursu MF, Doerge D, Sarkar FH, et al. The effect of genistein supplementation on performance and antioxidant status of Japanese quail under heat stress. Arch Anim Nutr. 2004;58:463-71. https://doi.org/10.1080/00039420400020017   DOI
141 Li-Weber M, Krammer PH. Regulation of IL4 gene expression by T cells and therapeutic perspectives. Nat Rev Immunol. 2003;3:534-43. https://doi.org/10.1038/nri1128   DOI
142 Lambert GP. Role of gastrointestinal permeability in exertional heatstroke. Exerc Sport Sci Rev. 2004;32:185-90. https://doi.org/10.1097/00003677-200410000-00011   DOI
143 Hai L, Rong D, Zhang ZY. The effect of thermal environment on the digestion of broilers. J Anim Physiol Anim Nutr. 2000;83:57-64. https://doi.org/10.1046/j.1439-0396.2000.00223.x   DOI
144 Schreck R, Albermann K, Baeuerle PA. Nuclear factor kB: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17:221-37. https://doi.org/10.3109/10715769209079515   DOI
145 Alagawany M, Farag MR, El-Hack MEA, Patra A. Heat stress: effects on productive and reproductive performance of quail. Worlds Poult Sci J. 2017;73:747-56. https://doi.org/10.1017/S0043933917000782   DOI
146 Zhang P, Yan T, Wang X, Kuang S, Xiao Y, Lu W, et al. Probiotic mixture ameliorates heat stress of laying hens by enhancing intestinal barrier function and improving gut microbiota. Ital J Anim Sci. 2017;16:292-300. https://doi.org/10.1080/1828051X.2016.1264261   DOI
147 Baek YC, Choi H, Jeong JY, Lee SD, Kim MJ, Lee S, et al. The impact of short-term acute heat stress on the rumen microbiome of Hanwoo steers. J Anim Sci Technol. 2020;62:208-17. https://doi.org/10.5187/jast.2020.62.2.208   DOI
148 Tajima K, Nonaka I, Higuchi K, Takusari N, Kurihara M, Takenaka A, et al. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe. 2007;13:57-64. https://doi.org/10.1016/j.anaerobe.2006.12.001   DOI
149 Suzuki K, Harasawa R, Yoshitake Y, Mitsuoka T. Effects of crowding and heat stress on intestinal flora, body weight gain, and feed efficiency of growing rats and chicks. Jpn J Vet Sci. 1983;45:331-8. https://doi.org/10.1292/jvms1939.45.331   DOI