1 |
Wang M, Lin X, Jiao H, Uyanga V, Zhao J, Wang X, et al. Mild heat stress changes the microbiota diversity in the respiratory tract and the cecum of layer-type pullets. Poult Sci. 2020;99:7015-26. https://doi.org/10.1016/j.psj.2020.09.024
DOI
|
2 |
Lee Y, Lee HY. Revisiting the bacterial phylum composition in metabolic diseases focused on host energy metabolism. Diabetes Metab J. 2020;44:658-67. https://doi.org/10.4093/dmj.2019.0220
DOI
|
3 |
Hu C, Yadnyavalkya P, Gong D, Yu T, Li J, Wu L, et al. Heat stress induced gut microbiota changes activate tlr4 / nf-κb signaling pathway contributing to inflammatory bowel disease in pigs. Res Sq. 2020:1-41. https://doi.org/10.21203/rs.2.21626/v1
DOI
|
4 |
Ibtisham F, Nawab A, Niu Y, Wang Z, Wu J, Xiao M, et al. The effect of ginger powder and Chinese herbal medicine on production performance, serum metabolites and antioxidant status of laying hens under heat-stress condition. J Therm Biol. 2019;81:20-4. https://doi.org/10.1016/j.jtherbio.2019.02.002
DOI
|
5 |
Mack LA, Felver-Gant JN, Dennis RL, Cheng HW. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult Sci. 2013;92:285-94. https://doi.org/10.3382/ps.2012-02589
DOI
|
6 |
Mignon-Grasteau S, Moreri U, Narcy A, Rousseau X, Rodenburg TB, Tixier-Boichard M, et al. Robustness to chronic heat stress in laying hens: a meta-analysis. Poult Sci. 2015;94:586-600. https://doi.org/10.3382/ps/pev028
DOI
|
7 |
Sahin N, Hayirli A, Orhan C, Tuzcu M, Komorowski JR, Sahin K. Effects of the supplemental chromium form on performance and metabolic profile in laying hens exposed to heat stress. Poult Sci. 2018;97:1298-305. https://doi.org/10.3382/ps/pex435
DOI
|
8 |
Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, Sa LRM, et al. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult Sci. 2010;89:1905-14. https://doi.org/10.3382/ps.2010-00812
DOI
|
9 |
Quinteiro-Filho WM, Calefi AS, Cruz DSG, Aloia TPA, Zager A, Astolfi-Ferreira CS, et al. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis. Vet Immunol Immunopathol. 2017;186:19-28. https://doi.org/10.1016/j.vetimm.2017.02.006
DOI
|
10 |
Gabler NK, Koltes D, Schaumberger S, Murugesan GR, Reisinger N. Diurnal heat stress reduces pig intestinal integrity and increases endotoxin translocation. Transl Anim Sci. 2018;2:1-10. https://doi.org/10.1093/tas/txx003
DOI
|
11 |
Mayorga EJ, Kvidera SK, Horst EA, Al-Qaisi M, Dickson MJ, Seibert JT, et al. Effects of zinc amino acid complex on biomarkers of gut integrity and metabolism during and following heat stress or feed restriction in pigs. J Anim Sci. 2018;96:4173-85. https://doi.org/10.1093/jas/sky293
DOI
|
12 |
Puchala R, Patra AK, Animut G, Sahlu T, Goetsch AL. Effects of feed restriction and realimentation on mohair fiber growth and tissue gain by growing Angora goats. Livest Sci. 2011;138:180-6. https://doi.org/10.1016/j.livsci.2010.12.022
DOI
|
13 |
Baumgard LH, Rhoads RP. Effects of heat stress on postabsorptive metabolism and energetics. Annu Rev Anim Biosci. 2013;1:311-37. https://doi.org/10.1146/annurev-animal-031412-103644
DOI
|
14 |
Johnson JS, Sapkota A, Lay DC. Rapid cooling after acute hyperthermia alters intestinal morphology and increases the systemic inflammatory response in pigs. J Appl Physiol. 2016;120:1249-59. https://doi.org/10.1152/japplphysiol.00685.2015
DOI
|
15 |
Lovatto PA, Sauvant D, Noblet J, Dubois S, van Milgen J. Effects of feed restriction and subsequent refeeding on energy utilization in growing pigs. J Anim Sci. 2006;84:3329-36. https://doi.org/10.2527/jas.2006-048
DOI
|
16 |
Pearce SC, Sanz Fernandez MV, Torrison J, Wilson ME, Baumgard LH, Gabler NK. Dietary organic zinc attenuates heat stress-induced changes in pig intestinal integrity and metabolism. J Anim Sci. 2015;93:4702-13. https://doi.org/10.2527/jas.2015-9018
DOI
|
17 |
Alhenaky A, Abdelqader A, Abuajamieh M, Al-Fataftah AR. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. J Therm Biol. 2017;70:9-14. https://doi.org/10.1016/j.jtherbio.2017.10.015
DOI
|
18 |
Choct M. Managing gut health through nutrition. Br Poult Sci. 2009;50:9-15. https://doi.org/10.1080/00071660802538632
DOI
|
19 |
Quinteiro-Filho WM, Rodrigues MV, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sa LRM, et al. Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary-adrenal axis activation. J Anim Sci. 2012;90:1986-94. https://doi.org/10.2527/jas.2011-3949
DOI
|
20 |
Pearce SC, Lonergan SM, Huff-Lonergan E, Baumgard LH, Gabler NK. Acute heat stress and reduced nutrient intake alter intestinal proteomic profile and gene expression in pigs. PLOS ONE. 2015;10:e0143099. https://doi.org/10.1371/journal.pone.0143099
DOI
|
21 |
Ruff J, Barros TL, Tellez G, Blankenship J, Lester H, Graham BD, et al. Research Note: evaluation of a heat stress model to induce gastrointestinal leakage in broiler chickens. Poult Sci. 2020;99:1687-92. https://doi.org/10.1016/j.psj.2019.10.075
DOI
|
22 |
Shakeri M, Cottrell JJ, Wilkinson S, Zhao W, Le HH, McQuade R, et al. Dietary betaine improves intestinal barrier function and ameliorates the impact of heat stress in multiple vital organs as measured by evans blue dye in broiler chickens. Animals. 2019;10:38. https://doi.org/10.3390/ani10010038
DOI
|
23 |
Sandner G, Mueller AS, Zhou X, Stadlbauer V, Schwarzinger B, Schwarzinger C, et al. Ginseng extract ameliorates the negative physiological effects of heat stress by supporting heat shock response and improving intestinal barrier integrity: evidence from studies with heat-stressed caco-2 cells, c. elegans and growing broilers. Molecules. 2020;25:835. https://doi.org/10.3390/molecules25040835
DOI
|
24 |
Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207-15. https://doi.org/10.1016/j.chom.2013.07.007
DOI
|
25 |
Santos RR, Awati A, Roubos-van den Hil PJ, Tersteeg-Zijderveld MHG, Koolmees PA, Fink-Gremmels J. Quantitative histo-morphometric analysis of heat-stress-related damage in the small intestines of broiler chickens. Avian Pathol. 2015;44:19-22. https://doi.org/10.1080/03079457.2014.988122
DOI
|
26 |
Becker CA, Collier RJ, Stone AE. Invited review: physiological and behavioral effects of heat stress in dairy cows. J Dairy Sci. 2020;103:6751-70. https://doi.org/10.3168/jds.2019-17929
DOI
|
27 |
Ratriyanto A, Mosenthin R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J Anim Physiol Anim Nutr. 2018;102:1634-50. https://doi.org/10.1111/jpn.12990
DOI
|
28 |
Saeed M, Babazadeh D, Naveed M, Arain MA, Hassan FU, Chao S. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review. Trop Anim Health Prod. 2017;49:1329-38. https://doi.org/10.1007/s11250-017-1355-z
DOI
|
29 |
Uyeno Y, Sekiguchi Y, Tajima K, Takenaka A, Kurihara M, Kamagata Y. An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe. 2010;16:27-33. https://doi.org/10.1016/j.anaerobe.2009.04.006
DOI
|
30 |
Heida FH, van Zoonen AGJF, Hulscher JBF, te Kiefte BJC, Wessels R, Kooi EMW, et al. A necrotizing enterocolitis-associated gut microbiota is present in the meconium: results of a prospective study. Clin Infect Dis Off Publ Infect Dis. 2016;62:863-70. https://doi.org/10.1093/cid/ciw016
DOI
|
31 |
Menconi A, Wolfenden AD, Shivaramaiah S, Terraes AJ, Urbano T, Kuttel J, et al. Effect of lactic acid bacteria probiotic culture for the treatment of Salmonella enterica serovar Heidelberg in neonatal broiler chickens and turkey poults. Poult Sci. 2011;90:561-5. https://doi.org/10.3382/ps.2010-01220
DOI
|
32 |
Nicola S, Amoruso A, Deidda F, Pane M, Allesina S, Mogna L, et al. Searching for the perfect homeostasis: five strains of Bifidobacterium longum from centenarians have a similar behavior in the production of cytokines. J Clin Gastroenterol. 2016;50:S126-30.
DOI
|
33 |
Serafini F, Strati F, Ruas-Madiedo P, Turroni F, Foroni E, Duranti S, et al. Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010. Anaerobe. 2013;21:9-17. https://doi.org/10.1016/j.anaerobe.2013.03.003
DOI
|
34 |
Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496-503. https://doi.org/10.1016/j.tibtech.2015.06.011
DOI
|
35 |
Zhang M, Zou XT, Li H, Dong XY, Zhao W. Effect of dietary γ-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens. Anim Sci J. 2012;83:141-7. https://doi.org/10.1111/j.1740-0929.2011.00939.x
DOI
|
36 |
Osman AM, Tanios NI. The effect of heat on the intestinal and pancreatic levels of amylase and maltase of laying hens and broilers. Comp Biochem Physiol A Physiol. 1983;75:563-7. https://doi.org/10.1016/0300-9629(83)90421-8
DOI
|
37 |
Ashraf S, Zaneb H, Yousaf MS, Ljaz A, Sohail MU, Muti S, et al. Effect of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress. J Anim Physiol Anim Nutr. 2013;97:68-73. https://doi.org/10.1111/jpn.12041
DOI
|
38 |
Abdelqader AM, Abuajamieh M, Hammad HM, Al-Fataftah ARA. Effects of dietary butyrate supplementation on intestinal integrity of heat-stressed cockerels. J Anim Physiol Anim Nutr. 2017;101:1115-21. https://doi.org/10.1111/jpn.12622
DOI
|
39 |
Quinteiro-Filho WM, Gomes AVS, Pinheiro ML, Ribeiro A, Ferraz-de-Paula V, Astolfi-Ferreira CS, et al. Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis. Avian Pathol. 2012;41:421-7. https://doi.org/10.1080/03079457.2012.709315
DOI
|
40 |
Mahesh MS, Mohanta RK, Patra AK. Probiotics in livestock and poultry nutrition and health. In: Goel G, Kumar A, editors. Advances in probiotics for sustainable food and medicine. Microorg Sustain. 2021:149-79. https://doi.org/10.1007/978-981-15-6795-7_7
DOI
|
41 |
Chen Z, Tang J, Sun YQ, Xie J. Protective effect of γ-aminobutyric acid on antioxidation function in intestinal mucosa of Wenchang chicken induced by heat stress. J Anim Plant Sci. 2013;23:1634-41.
|
42 |
Song J, Jiao LF, Xiao K, Luan ZS, Hu CH, Shi B, et al. Cello-oligosaccharide ameliorates heat stress-induced impairment of intestinal microflora, morphology and barrier integrity in broilers. Anim Feed Sci Technol. 2013;185:175-81. https://doi.org/10.1016/j.anifeedsci.2013.08.001
DOI
|
43 |
Al-Fataftah AR, Abdelqader A. Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Anim Feed Sci Technol. 2014;198:279-85. https://doi.org/10.1016/j.anifeedsci.2014.10.012
DOI
|
44 |
Cheng YF, Chen YP, Chen R, Su Y, Zang RQ, He QF, et al. Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers. Poult Sci. 2019;98:4767-76. https://doi.org/10.3382/ps/pez192
DOI
|
45 |
Abdelqader A, Al-Fataftah AR. Effect of dietary butyric acid on performance, intestinal morphology, microflora composition and intestinal recovery of heat-stressed broilers. Livest Sci. 2016;183:78-83. https://doi.org/10.1016/j.livsci.2015.11.026
DOI
|
46 |
Chen Z, Xie J, Wang B, Tang J. Effect of γ-aminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heat-stressed chicken. Poult Sci. 2014;93:2490-500. https://doi.org/10.3382/ps.2013-03398
DOI
|
47 |
Chen Z, Xie J, Hu MY, Tang J, Shao ZF, Li MH. Protective effects of γ -aminobutyric acid (GABA) on the small intestinal mucosa in heat-stressed wenchang chicken. J Anim Plant Sci. 2015;25:78-87.
|
48 |
Cui Y, Gu X. Proteomic changes of the porcine small intestine in response to chronic heat stress. J Mol Endocrinol. 2015;55:277-93. https://doi.org/10.1530/JME-15-0161
DOI
|
49 |
Sanz Fernandez MV, Pearce SC, Gabler NK, Patience JF, Wilson ME, Socha MT, et al. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs. Animal. 2014;8:43-50. https://doi.org/10.1017/S1751731113001961
DOI
|
50 |
Sohail MU, Hume ME, Byrd JA, Nisbet DJ, Ljaz A, Sohail A, et al. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult Sci. 2012;91:2235-40. https://doi.org/10.3382/ps.2012-02182
DOI
|
51 |
Sanz Fernandez MV, Pearce SC, Mani V, Gabler NK, Metzger L, Patience JF, et al. Effects of dairy products on intestinal integrity in heat-stressed pigs. Temperature. 2014;1:128-34. https://doi.org/10.4161/temp.29561
DOI
|
52 |
Wu QJ, Liu N, Wu XH, Wang GY, Lin L. Glutamine alleviates heat stress-induced impairment of intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers. Poult Sci. 2018;97:2675-83. https://doi.org/10.3382/ps/pey123
DOI
|
53 |
Yu J, Yin P, Liu F, Cheng G, Guo K, Lu A, et al. Effect of heat stress on the porcine small intestine: a morphological and gene expression study. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:119-28. https://doi.org/10.1016/j.cbpa.2010.01.008
DOI
|
54 |
Yi D, Hou Y, Tan L, Liao M, Xie J, Wang L, et al. N-acetylcysteine improves the growth performance and intestinal function in the heat-stressed broilers. Anim Feed Sci Technol. 2016;220:83-92. https://doi.org/10.1016/j.anifeedsci.2016.07.014
DOI
|
55 |
Zhu Y, Liao X, Lu L, Li W, Zhang L, Ji C, et al. Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures. Oncotarget. 2017;8:19814-24. https://doi.org/10.18632/oncotarget.15057
DOI
|
56 |
Song J, Xiao K, Ke YL, Jiao LF, Hu CH, Diao QY, et al. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult Sci. 2014;93:581-8. https://doi.org/10.3382/ps.2013-03455
DOI
|
57 |
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799-809. https://doi.org/10.1038/nri2653
DOI
|
58 |
Wallin RPA, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 2002;23:130-5. https://doi.org/10.1016/s1471-4906(01)02168-8
DOI
|
59 |
Zhang C, Zhao XH, Yang L, Chen XY, Jiang RS, Jin SH, et al. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult Sci. 2017;96:4325-32. https://doi.org/10.3382/ps/pex266
DOI
|
60 |
Liao X, Li W, Zhu Y, Zhang L, Lu L, Lin X, et al. Effects of environmental temperature and dietary zinc on egg production performance, egg quality and antioxidant status and expression of heat-shock proteins in tissues of broiler breeders. Br J Nutr. 2018;120:3-12. https://doi.org/10.1017/S0007114518001368
DOI
|
61 |
Zhu Y, Lu L, Liao X, Li W, Zhang L, Ji C, et al. Maternal dietary manganese protects chick embryos against maternal heat stress via epigenetic-activated antioxidant and anti-apoptotic abilities. Oncotarget. 2017;8:89665-80. https://doi.org/10.18632/oncotarget.20804
DOI
|
62 |
Ghazi Sh, Habibian M, Moeini MM, Abdolmohammadi AR. Effects of different levels of organic and inorganic chromium on growth performance and immunocompetence of broilers under heat stress. Biol Trace Elem Res. 2012;146:309-17. https://doi.org/10.1007/s12011-011-9260-1
DOI
|
63 |
Sahin N, Tuzcu M, Orhan C, Onderci M, Eroksuz Y, Sahin K. The effects of vitamin C and E supplementation on heat shock protein 70 response of ovary and brain in heat-stressed quail. Br Poult Sci. 2009;50:259-65. https://doi.org/10.1080/00071660902758981
DOI
|
64 |
Slimen IB, Najar T, Ghram A, Abdrrabba M. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr. 2016;100:401-12. https://doi.org/10.1111/jpn.12379
DOI
|
65 |
Rea K, Dinan TG, Cryan JF. The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress. 2016;4:23-33. https://doi.org/10.1016/j.ynstr.2016.03.001
DOI
|
66 |
Cholewinska P, Gorniak W, Wojnarowski K. Impact of selected environmental factors on microbiome of the digestive tract of ruminants. BMC Vet Res. 2021;17:25. https://doi.org/10.1186/s12917-021-02742-y
DOI
|
67 |
Burkholder KM, Thompson KL, Einstein ME, Applegate TJ, Patterson JA. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poult Sci. 2008;87:1734-41. https://doi.org/10.3382/ps.2008-00107
DOI
|
68 |
Kadzere CT, Murphy MR, Silanikove N, Maltz E. Heat stress in lactating dairy cows: a review. Livest Prod Sci. 2002;77:59-91. https://doi.org/10.1016/S0301-6226(01)00330-X
DOI
|
69 |
Polsky L, von Keyserlingk MAG. Invited review: effects of heat stress on dairy cattle welfare. J Dairy Sci. 2017;100:8645-57. https://doi.org/10.3168/jds.2017-12651
DOI
|
70 |
Domingo MC, Yansouni C, Gaudreau C, Lamothe S, Levesque S, Tremblay C, et al. Cloacibacillus sp., a potential human pathogen associated with bacteremia in Quebec and New Brunswick. J Clin Microbiol. 2015;53:3380-3. https://doi.org/10.1128/JCM.01137-15
DOI
|
71 |
Minamoto Y, Otoni CC, Steelman SM, Buyukleblebici O, Steiner JM, Jergens AE, et al. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes. 2015;6:33-47. https://doi.org/10.1080/19490976.2014.997612
DOI
|
72 |
Berkhoff HA. Clostridium colinum sp. nov., nom. rev., the causative agent of ulcerative enteritis (quail disease) in quail, chickens, and pheasants. Int J Syst Evol Microbiol. 1985;35:155-9. https://doi.org/10.1099/00207713-35-2-155
DOI
|
73 |
Malinen E, Krogius-Kurikka L, Lyra A, Nikkila J, Jaaskelainen A, Rinttila T, et al. Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World J Gastroenterol. 2010;16:4532-40. https://doi.org/10.3748/wjg.v16.i36.4532
DOI
|
74 |
Peterson VL, Jury NJ, Cabrera-Rubio R, Draper LA, Crispe F, Cotter PD, et al. Drunk bugs: chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice. Behav Brain Res. 2017;323:172-6. https://doi.org/10.1016/j.bbr.2017.01.049
DOI
|
75 |
Suchodolski JS, Foster ML, Sohail MU, Leutenegger C, Queen EV, Steiner JM, et al. The fecal microbiome in cats with diarrhea. PLOS ONE. 2015;10:e0127378. https://doi.org/10.1371/journal.pone.0127378
DOI
|
76 |
Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria: from metagenomic species to metabolic features. Environ Microbiol. 2017;19:835-41. https://doi.org/10.1111/1462-2920.13658
DOI
|
77 |
Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJM, Thiele I. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol. 2014;196:3289-302. https://doi.org/10.1128/JB.01780-14
DOI
|
78 |
Goo D, Kim JH, Park GH, Delos Reyes JB, Kil DY. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals. 2019;9:107. https://doi.org/10.3390/ani9030107
DOI
|
79 |
Ebeid TA, Suzuki T, Sugiyama T. High ambient temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poult Sci. 2012;91:2282-7. https://doi.org/10.3382/ps.2011-01898
DOI
|
80 |
Garriga C, Hunter RR, Amat C, Planas JM, Mitchell MA, Moreto M. Heat stress increases apical glucose transport in the chicken jejunum. Am J Physiol Regul Integr Comp Physiol. 2006;290:R195-201. https://doi.org/10.1152/ajpregu.00393.2005
DOI
|
81 |
Gu XH, Hao Y, Wang XL. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. intestinal oxidative stress. Poult Sci. 2012;91:790-9. https://doi.org/10.3382/ps.2011-01628
DOI
|
82 |
Koch F, Thom U, Albrecht E, Weikard R, Nolte W, Kuhla B, et al. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc Natl Acad Sci. 2019;116:10333-8. https://doi.org/10.1073/pnas.1820130116
DOI
|
83 |
Kpodo KR, Duttlinger AW, Radcliffe JS, Johnson JS. Time course determination of the effects of rapid and gradual cooling after acute hyperthermia on body temperature and intestinal integrity in pigs. J Therm Biol. 2020;87:102481. https://doi.org/10.1016/j.jtherbio.2019.102481
DOI
|
84 |
Li Q, Wan G, Peng C, Xu L, Yu Y, Li L, et al. Effect of probiotic supplementation on growth performance, intestinal morphology, barrier integrity, and inflammatory response in broilers subjected to cyclic heat stress. Anim Sci J Nihon Chikusan Gakkaiho. 2020;91:e13433. https://doi.org/10.1111/asj.13433
DOI
|
85 |
Bello AU, Sulaiman JA, Aliyu MS. Acute phase protein mRNA expressions and enhancement of antioxidant defense system in black-meated Silkie fowls supplemented with clove (Eugenia caryophyllus) extracts under the influence of chronic heat stress. J Anim Sci Technol. 2016;58:39. https://doi.org/10.1186/s40781-016-0122-4
DOI
|
86 |
De Maio A. Heat shock proteins: facts, thoughts, and dreams. Shock. 1999;11:1-12. https://doi.org/10.1097/00024382-199901000-00001
DOI
|
87 |
Wang L, Zhu F, Yang H, Li J, Li Y, Ding X, et al. Epidermal growth factor improves intestinal morphology by stimulating proliferation and differentiation of enterocytes and mTOR signaling pathway in weaning piglets. Sci China Life Sci. 2020;63:259-68. https://doi.org/10.1007/s11427-018-9519-6
DOI
|
88 |
Patra AK. Influence of plant bioactive compounds on intestinal epithelial barrier in poultry. Mini Rev Med Chem. 2020;20:566-77. https://doi.org/10.2174/1389557520666191226111405
DOI
|
89 |
Patra AK, Amasheh S, Aschenbach JR. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds: a comprehensive review. Crit Rev Food Sci Nutr. 2019;59:3237-66. https://doi.org/10.1080/10408398.2018.1486284
DOI
|
90 |
Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals. 2017;11:2. https://doi.org/10.3390/ph11010002
DOI
|
91 |
Habibian M, Sadeghi G, Ghazi S, Moeini MM. Selenium as a feed supplement for heat-stressed poultry: a review. Biol Trace Elem Res. 2015;165:183-93. https://doi.org/10.1007/s12011-015-0275-x
DOI
|
92 |
Jimoh OA, Ayedun ES, Oyelade WA, Oloruntola OD, Daramola OT, Ayodele SO, et al. Protective effect of soursop (Annona muricata Linn.) juice on oxidative stress in heat stressed rabbits. J Anim Sci Technol. 2018;60:28. https://doi.org/10.1186/s40781-018-0186-4
DOI
|
93 |
Xie Y, Chen Z, Wang D, Chen G, Sun X, He Q, et al. Effects of fermented herbal tea residues on the intestinal microbiota characteristics of holstein heifers under heat stress. Front Microbiol. 2020;11:1014.https://doi.org/10.3389/fmicb.2020.01014
DOI
|
94 |
Habibi R, Sadeghi GH, Karimi A. Effect of different concentrations of ginger root powder and its essential oil on growth performance, serum metabolites and antioxidant status in broiler chicks under heat stress. Br Poult Sci. 2014;55:228-37. https://doi.org/10.1080/00071668.2014.887830
DOI
|
95 |
Chauhan SS, Celi P, Leury BJ, Clarke IJ, Dunshea FR. Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J Anim Sci. 2014;92:3364-74. https://doi.org/10.2527/jas.2014-7714
DOI
|
96 |
Zhu YW, Lu L, Li WX, Zhang LY, Ji C, Lin X, et al. Effect of dietary manganese on antioxidant status and expression levels of heat-shock proteins and factors in tissues of laying broiler breeders under normal and high environmental temperatures. Br J Nutr. 2015;114:1965-74. https://doi.org/10.1017/S0007114515003803
DOI
|
97 |
Borda-Molina D, Seifert J, Camarinha-Silva A. Current perspectives of the chicken gastrointestinal tract and its microbiome. Comput Struct Biotechnol J. 2018;16:131-9. https://doi.org/10.1016/j.csbj.2018.03.002
DOI
|
98 |
Xie J, Tang L, Lu L, Zhang L, Xi L, Liu HC, et al. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PLOS ONE. 2014;9:e102204. https://doi.org/10.1371/journal.pone.0102204
DOI
|
99 |
Zhang WW, Kong LN, Zhang XQ, Luo QB. Alteration of HSF3 and HSP70 mRNA expression in the tissues of two chicken breeds during acute heat stress. Genet Mol Res. 2014;13:9787-94. https://doi.org/10.4238/2014.November.27.6
DOI
|
100 |
Uerlings J, Song ZG, Hu XY, Wang SK, Lin H, Buyse J, et al. Heat exposure affects jejunal tight junction remodeling independently of adenosine monophosphate-activated protein kinase in 9-day-old broiler chicks. Poult Sci. 2018;97:3681-90. https://doi.org/10.3382/ps/pey229
DOI
|
101 |
Varasteh S, Braber S, Akbari P, Garssen J, Fink-Gremmels J. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLOS ONE. 2015;10:e0138975. https://doi.org/10.1371/journal.pone.0138975
DOI
|
102 |
Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals. 2013;3:356-69. https://doi.org/10.3390/ani3020356
DOI
|
103 |
Renaudeau D, Collin A, Yahav S, de Basilio V, Gourdine JL, Collier RJ. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal. 2012;6:707-28. https://doi.org/10.1017/S1751731111002448
DOI
|
104 |
Yadav S, Jha R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J Anim Sci Biotechnol. 2019;10:2. https://doi.org/10.1186/s40104-018-0310-9
DOI
|
105 |
Wang XJ, Feng JH, Zhang MH, Li XM, Ma DD, Chang SS. Effects of high ambient temperature on the community structure and composition of ileal microbiome of broilers. Poult Sci. 2018;97:2153-8.https://doi.org/10.3382/ps/pey032
DOI
|
106 |
Le Sciellour M, Zemb O, Hochu I, Riquet J, Gilbert H, Giorgi M, et al. Effect of chronic and acute heat challenges on fecal microbiota composition, production, and thermoregulation traits in growing pigs. J Anim Sci. 2019;97:3845-58. https://doi.org/10.1093/jas/skz222
DOI
|
107 |
Shang Y, Kumar S, Oakley B, Kim WK. Chicken gut microbiota: importance and detection technology. Front Vet Sci. 2018;5:254. https://doi.org/10.3389/fvets.2018.00254
DOI
|
108 |
He J, He Y, Pan D, Cao J, Sun Y, Zeng X. Associations of gut microbiota with heat stress-induced changes of growth, fat deposition, intestinal morphology, and antioxidant capacity in ducks. Front Microbiol. 2019;10:903. https://doi.org/10.3389/fmicb.2019.00903
DOI
|
109 |
Xing S, Wang X, Diao H, Zhang M, Zhou Y, Feng J. Changes in the cecal microbiota of laying hens during heat stress is mainly associated with reduced feed intake. Poult Sci. 2019;98:5257-64. https://doi.org/10.3382/ps/pez440
DOI
|
110 |
Liu G, Zhu H, Ma T, Yan Z, Zhang Y, Geng Y, et al. Effect of chronic cyclic heat stress on the intestinal morphology, oxidative status and cecal bacterial communities in broilers. J Therm Biol. 2020;91:102619. https://doi.org/10.1016/j.jtherbio.2020.102619
DOI
|
111 |
He J, Guo H, Zheng W, Xue Y, Zhao R, Yao W. Heat stress affects fecal microbial and metabolic alterations of primiparous sows during late gestation. J Anim Sci Biotechnol. 2019;10:84. https://doi.org/10.1186/s40104-019-0391-0
DOI
|
112 |
Xiong Y, Yi H, Wu Q, Jiang Z, Wang L. Effects of acute heat stress on intestinal microbiota in grow-finishing pigs, and associations with feed intake and serum profile. J Appl Microbiol. 2020;128:840-52. https://doi.org/10.1111/jam.14504
DOI
|
113 |
Sommer F, Backhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol. 2013;11:227-38. https://doi.org/10.1038/nrmicro2974
DOI
|
114 |
Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5:627-40. https://doi.org/10.3390/d5030627
DOI
|
115 |
Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol. 2014;6:703-13. https://doi.org/10.1093/gbe/evu050
DOI
|
116 |
Contreras-Jodar A, Nayan NH, Hamzaoui S, Caja G, Salama AAK. Heat stress modifies the lactational performances and the urinary metabolomic profile related to gastrointestinal microbiota of dairy goats. PLOS ONE. 2019;14:e0202457. https://doi.org/10.1371/journal.pone.0202457
DOI
|
117 |
Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci. 2011;108:16050-5. https://doi.org/10.1073/pnas.1102999108
DOI
|
118 |
Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37:1885-95. https://doi.org/10.1016/j.psyneuen.2012.03.024
DOI
|
119 |
Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: a review. J Sport Health Sci. 2017;6:179-97. https://doi.org/10.1016/j.jshs.2016.05.001
DOI
|
120 |
Shi D, Bai L, Qu Q, Shanshan Z, Meimei Y, Shining G, et al. Impact of gut microbiota structure in heat-stressed broilers. Poult Sci. 2019;98:2405-13. https://doi.org/10.3382/ps/pez026
DOI
|
121 |
Chen S, Wang J, Peng D, Li G, Chen J, Gu X. Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows. Sci Rep. 2018;8:14606. https://doi.org/10.1038/s41598-018-32886-1
DOI
|
122 |
Zhu L, Liao R, Wu N, Zhu G, Yang C. Heat stress mediates changes in fecal microbiome and functional pathways of laying hens. Appl Microbiol Biotechnol. 2019;103:461-72. https://doi.org/10.1007/s00253-018-9465-8
DOI
|
123 |
Patra AK. An overview of antimicrobial properties of different classes of phytochemicals. In: Patra AK, editor. Dietary phytochemicals and microbes. Dordrecht, Netherlands: Springer; 2012. p. 1-32.
|
124 |
Alhenaky A, Abdelqader A, Abuajamieh M, Al-Fataftah AR. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. J Therm Biol. 2017;70:9-14. https://doi.org/10.1016/j.jtherbio.2017.10.015
DOI
|
125 |
Hajati H, Hassanabadi A, Golian AG, Nassiri-Moghaddam H, Nassiri MR. The effect of grape seed extract and vitamin C feed supplements on carcass characteristics, gut morphology and ileal microflora in broiler chickens exposed to chronic heat stress. Iranian J Appl Anim Sci. 2015;5:155-65.
|
126 |
Humam AM, Loh TC, Foo HL, Samsudin AA, Mustapha NM, Zulkifli I, et al. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals. 2019;9:644. https://doi.org/10.3390/ani9090644
DOI
|
127 |
Patra A. Interactions of plant bioactives with nutrient transport systems in gut of livestock. Indian J Anim Health. 2018;57:125-36. https://doi.org/10.36062/ijah.57.2.2018.125-36
DOI
|
128 |
Hasheimi SR, Zulkifli I, Somchit MN, Zunita Z, Loh TC, Soleimani, et al. Dietary supplementation of Zingiber officinale and Zingiber zerumbet to heat-stressed broiler chickens and its effect on heat shock protein 70 expression, blood parameters and body temperature. J Anim Physiol Anim Nutr. 2013;97:632-8. https://doi.org/10.1111/j.1439-0396.2012.01302.x
DOI
|
129 |
Tuzcu M, Sahin N, Karatepe M, Cikim G, Kilinc U, Sahin K. Epigallocatechin-3-gallate supplementation can improve antioxidant status in stressed quail. Br Poult Sci. 2008;49:643-8. https://doi.org/10.1080/00071660802298336
DOI
|
130 |
Liu F, Yin J, Du M, Pan P, Xu J, Zhu J, et al. Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling. J Anim Sci. 2009;87:1941-9. https://doi.org/10.2527/jas.2008-1624
DOI
|
131 |
Liu L, Fu C, Yan M, Xie H, Li S,Yu Q, et al. Resveratrol modulates intestinal morphology and HSP70/90, NF-κB and EGF expression in the jejunal mucosa of black-boned chickens on exposure to circular heat stress. Food Funct. 2016;7:1329-38. https://doi.org/10.1039/c5fo01338k
DOI
|
132 |
Liu F, Cottrell JJ, Furness JB, Rivera LR, Kelly FW, Wijesiriwardana U, et al. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp Physiol. 2016;101:801-10. https://doi.org/10.1113/EP085746
DOI
|
133 |
Porto ML, Givisiez PEN, Saraiva EP, Costa FGP, Moreira Filho ALB, Andrade MSF, et al. Glutamic acid improves body weight gain and intestinal morphology of broiler chickens submitted to heat stress. Braz J Poult Sci. 2015;17:355-62. https://doi.org/10.1590/1516-635x1703355-362
DOI
|
134 |
Pearce SC, Mani V, Boddicker RL, Johnson JS, Weber TE, Ros JW, et al. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLOS ONE. 2013;8:e70215. https://doi.org/10.1371/journal.pone.0070215
DOI
|
135 |
Pearce SC, Mani V, Weber TE, Rhoads RP, Patience JF, Baumgard LH, et al. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs. J Anim Sci. 2013;91:5183-93. https://doi.org/10.2527/jas.2013-6759
DOI
|
136 |
Pearce SC, Sanz-Fernandez MV, Hollis JH, Baumgard LH, Gabler NK. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs. J Anim Sci. 2014;92:5444-54. https://doi.org/10.2527/jas.2014-8407
DOI
|
137 |
Hao Y, Gu XH, Wang XL. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 1. intestinal structure and digestive function. Poult Sci. 2012;91:781-9. https://doi.org/10.3382/ps.2011-01627
DOI
|
138 |
Al Wakeel RA, Shukry M, Abdel Azeez A, Mahmoud S, Saad MF. Alleviation by gamma amino butyric acid supplementation of chronic heat stress-induced degenerative changes in jejunum in commercial broiler chickens. Stress. 2017;20:562-72. https://doi.org/10.1080/10253890.2017.1377177
DOI
|
139 |
Sun X, Zhang H, Sheikhahmadi A, Wang Y, Jiao H, Lin H, et al. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). Int J Biometeorol. 2015;59:127-35. https://doi.org/10.1007/s00484-014-0829-1
DOI
|
140 |
Onderci M, Sahin K, Sahin N, Gursu MF, Doerge D, Sarkar FH, et al. The effect of genistein supplementation on performance and antioxidant status of Japanese quail under heat stress. Arch Anim Nutr. 2004;58:463-71. https://doi.org/10.1080/00039420400020017
DOI
|
141 |
Li-Weber M, Krammer PH. Regulation of IL4 gene expression by T cells and therapeutic perspectives. Nat Rev Immunol. 2003;3:534-43. https://doi.org/10.1038/nri1128
DOI
|
142 |
Lambert GP. Role of gastrointestinal permeability in exertional heatstroke. Exerc Sport Sci Rev. 2004;32:185-90. https://doi.org/10.1097/00003677-200410000-00011
DOI
|
143 |
Hai L, Rong D, Zhang ZY. The effect of thermal environment on the digestion of broilers. J Anim Physiol Anim Nutr. 2000;83:57-64. https://doi.org/10.1046/j.1439-0396.2000.00223.x
DOI
|
144 |
Schreck R, Albermann K, Baeuerle PA. Nuclear factor kB: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17:221-37. https://doi.org/10.3109/10715769209079515
DOI
|
145 |
Alagawany M, Farag MR, El-Hack MEA, Patra A. Heat stress: effects on productive and reproductive performance of quail. Worlds Poult Sci J. 2017;73:747-56. https://doi.org/10.1017/S0043933917000782
DOI
|
146 |
Zhang P, Yan T, Wang X, Kuang S, Xiao Y, Lu W, et al. Probiotic mixture ameliorates heat stress of laying hens by enhancing intestinal barrier function and improving gut microbiota. Ital J Anim Sci. 2017;16:292-300. https://doi.org/10.1080/1828051X.2016.1264261
DOI
|
147 |
Baek YC, Choi H, Jeong JY, Lee SD, Kim MJ, Lee S, et al. The impact of short-term acute heat stress on the rumen microbiome of Hanwoo steers. J Anim Sci Technol. 2020;62:208-17. https://doi.org/10.5187/jast.2020.62.2.208
DOI
|
148 |
Tajima K, Nonaka I, Higuchi K, Takusari N, Kurihara M, Takenaka A, et al. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe. 2007;13:57-64. https://doi.org/10.1016/j.anaerobe.2006.12.001
DOI
|
149 |
Suzuki K, Harasawa R, Yoshitake Y, Mitsuoka T. Effects of crowding and heat stress on intestinal flora, body weight gain, and feed efficiency of growing rats and chicks. Jpn J Vet Sci. 1983;45:331-8. https://doi.org/10.1292/jvms1939.45.331
DOI
|