Browse > Article
http://dx.doi.org/10.4014/jmb.1709.09070

Insights into the Gut Microbiota of Freshwater Shrimp and Its Associations with the Surrounding Microbiota and Environmental Factors  

Zhao, Yanting (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University)
Duan, Cuilan (Fisheries Technology Extension Center of Jiangsu Province)
Zhang, Xu-xiang (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University)
Chen, Huangen (Fisheries Technology Extension Center of Jiangsu Province)
Ren, Hongqiang (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University)
Yin, Ying (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University)
Ye, Lin (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.6, 2018 , pp. 946-956 More about this Journal
Abstract
The gut microbiota of aquatic animals plays a crucial role in host health through nutrient acquisition and outcompetition of pathogens. In this study, on the basis of the high-throughput sequencing of 16S rRNA gene amplicons, we examined the bacterial communities in the gut of freshwater shrimp (Macrobrachium nipponense) and in their living environments (sediment and pond water) and analyzed the effects of abiotic and biotic factors on the shrimp gut bacterial communities. High bacterial heterogeneity was observed in the freshwater shrimp gut samples, and the result indicated that both the surrounding bacterial community and water quality factors (particularly dissolved oxygen and temperature) could affect the shrimp gut bacterial community. Despite the observed heterogeneity, 57 genera, constituting 38-99% of the total genera in each of the 40 shrimp gut samples, were identified as the main bacterial population in the gut of M. nipponense. In addition, a high diversity and abundance of lactic acid bacteria (26 genera), which could play significant roles in the digestion process in shrimp, were observed in the shrimp gut samples. Overall, this study provides insights into the gut bacterial communities of freshwater shrimp and basic information for shrimp farming regarding the application of probiotics and disease prevention.
Keywords
Freshwater shrimp; gut microbiota; environmental factors; lactic acid bacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Backhed F. 2011. Programming of host metabolism by the gut microbiota. Ann. Nutr. Metab. 58: 44-52.   DOI
2 Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. 2008. Evolution of mammals and their gut microbes. Science 320: 1647-1651.   DOI
3 Angelakis E, Armougom F, Million M, Raoult D. 2012. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 7: 91-109.   DOI
4 Khan I, Yasir M, Azhar EI, Kumosani T, Barbour EK, Bibi F, et al. 2014. Implication of gut microbiota in human health. CNS Neurol. Disord. Drug Targets 13: 1325-1333.   DOI
5 Schnabl B, Brenner DA. 2014. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146: 1513-1524.   DOI
6 Geng X, Dong XH, Tan BP, Yang QH, Chi SY, Liu HY, et al. 2012. Effects of dietary probiotic on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Aquac. Nutr. 18: 46-55.   DOI
7 Kuda T, Masuko Y, Kawahara M, Kondo S, Nemoto M, Nakata T, et al. 2016. Bile acid-lowering properties of Lactobacillus plantarum Sanriku-SU3 isolated from Japanese surfperch fish. Food Biosci. 14: 41-46.   DOI
8 Jacobs J, Braun J. 2014. Host genes and their effect on the intestinal microbiome garden. Genome Med. 6: 119.   DOI
9 Grigorescu I, Dumitrascu DL. 2016. Implication of gut microbiota in diabetes mellitus and obesity. Acta Endocrinol. (Bucharest) 12: 206-214.   DOI
10 Moeller AH, Li Y, Ngole EM, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, et al. 2014. Rapid changes in the gut microbiome during human evolution. Proc. Natl. Acad. Sci. USA 111: 16431-16435.   DOI
11 Konya T, Koster B, Maughan H, Escobar M, Azad MB, Guttman DS, et al. 2014. Associations between bacterial communities of house dust and infant gut. Environ. Res. 131: 25-30.   DOI
12 Sullam KE, Essinger SD, Lozupone CA, O'Connor MP, Rosen GL, Knight R, et al. 2012. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol. 21: 3363-3378.   DOI
13 Kohl KD, Yahn J. 2016. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 18: 1561-1565.   DOI
14 Cabello FC. 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol. 8: 1137-1144.   DOI
15 Kuda T, Noguchi Y, Ono M, Takahashi H, Kimura B, Kamita R, et al. 2014. In vitro evaluation of the fermentative, antioxidant, and anti-inflammation properties of Lactococcus lactis subsp. lactis BF3 and Leuconostoc mesenteroides subsp. mesenteroides BF7 isolated from Oncorhynchus keta intestines in Rausu, Japan. J. Funct. Foods 11: 269-277.   DOI
16 Russo P, Iturria I, Luz Mohedano M, Caggianiello G, Rainieri S, Fiocco D, et al. 2015. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl. Microbiol. Biotechnol. 99: 3479-3490.   DOI
17 Liu J, Yan Q, Luo F, Shang D, Wu D, Zhang H, et al. 2015. Acute cholecystitis associated with infection of Enterobacteriaceae from gut microbiota. Clin. Microbiol. Infect. 21: 851.e19.
18 Tang Y, Tao P, Tan J, Mu H, Peng L, Yang D, et al. 2014. Identification of bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei reveals distinct temperature-driven patterns. Int. J. Mol. Sci. 15: 13663-13680.   DOI
19 Montiel Quezel-Guerraz N, Marin Arriaza M, Carrillo Avila JA, Sanchez-Yebra Romera WE, Martinez-Lirola MJ, Indal TBG. 2010. Evaluation of the Speed-oligo (R) Mycobacteria assay for identification of Mycobacterium spp. from fresh liquid and solid cultures of human clinical samples. Diagn. Microbiol. Infect. Dis. 68: 123-131.   DOI
20 Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. 2012. The application of ecological theory toward an understanding of the human microbiome. Science 336: 1255-1262.   DOI
21 Abass NA, Suleiman KM, El Jalii IM. 2010. Differentiation of clinical Mycobacterium tuberculosis complex isolates by their GyrB polymorphism. Indian J. Med. Microbiol. 28: 26-29.   DOI
22 Gibson DJ, Ely JS, Collins SL. 1999. The core-satellite species hypothesis provides a theoretical basis for Grime's classification of dominant, subordinate, and transient species. J. Ecol. 87: 1064-1067.   DOI
23 Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10: 497-506.   DOI
24 Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4: 102-112.   DOI
25 Yan Q, Li J, Yu Y, Wang J, He Z, Van Nostrand JD, et al. 2016. Environmental filtering decreases with fish development for the assembly of gut microbiota. Environ. Microbiol. 18: 4739-4754.   DOI
26 Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA. 2014. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J. 8: 2369-2379.   DOI
27 Otani S, Mikaelyan A, Nobre T, Hansen LH, Kone NGA, Sorensen SJ, et al. 2014. Identifying the core microbial community in the gut of fungus-growing termites. Mol. Ecol. 23: 4631-4644.   DOI
28 Dishaw LJ, Flores-Torres J, Lax S, Gemayel K, Leigh B, Melillo D, et al. 2014. The gut of geographically disparate Ciona intestinalis harbors a core microbiota. PLoS One 9: e93386.   DOI
29 Wong ACN, Chaston JM, Douglas AE. 2013. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7: 1922-1932.   DOI
30 Manfredi R, Nanetti A, Ferri M, Mastroianni A, Coronado OV, Chiodo F. 1999. Flavobacterium spp. organisms as opportunistic bacterial pathogens during advanced HIV disease. J. Infect. 39: 146-152.   DOI
31 Toranzo AE, Magarinos B, Romalde JL. 2005. A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246: 37-61.   DOI
32 Tall A, Teillon A, Boisset C, Delesmont R, Touron-Bodilis A, Hervio-Heath D. 2012. Real-time PCR optimization to identify environmental Vibrio spp. strains. J. Appl. Microbiol. 113: 361-372.   DOI
33 Rungrassamee W, Klanchui A, Maibunkaew S, Karoonuthaisiri N. 2016. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure. J. Invertebr. Pathol. 133: 12-19.   DOI
34 Xiong J, Dai W, Li C. 2016. Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Appl. Microbiol. Biotechnol. 100: 6947-6954.   DOI
35 Ringo E, Olsen RE, Gifstad TO, Dalmo RA, Amlund H, Hemre GI, et al. 2010. Prebiotics in aquaculture: a review. Aquac. Nutr. 16: 117-136.   DOI
36 Attramadal KJK, Thi My Hanh T, Bakke I, Skjermo J, Olsen Y, Vadstein O. 2014. RAS and microbial maturation as tools for K-selection of microbial communities improve survival in cod larvae. Aquaculture 432: 483-490.   DOI
37 Balcazar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Muzquiz JL. 2006. The role of probiotics in aquaculture. Vet. Microbiol. 114: 173-186.   DOI
38 Attramadal KJK, Salvesen I, Xue R, Oie G, Storseth TR, Vadstein O, et al. 2012. Recirculation as a possible microbial control strategy in the production of marine larvae. Aquac. Eng. 46: 27-39.   DOI
39 Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P. 2016. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ. Microbiol. 18: 2103-2116.   DOI
40 Engel P, Moran NA. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37: 699-735.   DOI
41 Liu H, Liu M, Wang B, Jiang K, Jiang S, Sun S, et al. 2010. PCR-DGGE analysis of intestinal bacteria and effect of Bacillus spp. on intestinal microbial diversity in kuruma shrimp (Marsupenaeus japonicus). Chin. J. Oceanol. Limnol. 28: 808-814.   DOI
42 Rungrassamee W, Klanchui A, Maibunkaew S, Chaiyapechara S, Jiravanichpaisal P, Karoonuthaisiri N. 2014. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS One 9: e91853.   DOI
43 Rahman NMA, Fu HT, Sun SM, Qiao H, Jin S, Bai HK, et al. 2016. Molecular cloning and expression pattern of oriental river prawn (Macrobrachium nipponense) nitric oxide synthase. Genet. Mol. Res. 15: DOI: 10.4238/gmr.15038541.
44 Tzeng T-D, Pao Y-Y, Chen P-C, Weng FC-H, Jean WD, Wang D. 2015. Effects of host phylogeny and habitats on gut microbiomes of oriental river prawn (Macrobrachium nipponense). PLoS One 10: e0132860.   DOI
45 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI
46 Kim D-U, Lee H, Kim H, Kim S-G, Ka J-O. 2016. Dongia soli sp. nov., isolated from soil from Dokdo, Korea. Antonie Van Leeuwenhoek 109: 1397-1402.   DOI
47 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336.   DOI
48 Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267.   DOI
49 Jiang X-T, Peng X, Deng G-H, Sheng H-F, Wang Y, Zhou H-W, et al. 2013. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 66: 96-104.   DOI
50 Rungrassamee W, Klanchui A, Chaiyapechara S, Maibunkaew S, Tangphatsornruang S, Jiravanichpaisal P, et al. 2013. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS One 8: e60802.   DOI
51 Baik KS, Hwang YM, Choi J-S, Kwon J, Seong CN. 2013. Dongia rigui sp. nov., isolated from freshwater of a large wetland in Korea. Antonie Van Leeuwenhoek 104: 1143-1150.   DOI
52 Rahalkar M, Bahulikar RA, Deutzmann JS, Kroth PG, Schink B. 2012. Elstera litoralis gen. nov., sp nov., isolated from stone biofilms of Lake Constance, Germany. Int. J. Syst. Evol. Microbiol. 62: 1750-1754.   DOI
53 Ye L, Amberg J, Chapman D, Gaikowski M, Liu W-T. 2014. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J. 8: 541-551.   DOI
54 Dec M, Puchalski A, Nowaczek A, Wernicki A. 2016. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogens. Int. Microbiol. 19: 57-67.
55 Prewitt L, Kang Y, Kakumanu ML, Williams M. 2014. Fungal and bacterial community succession differs for three wood types during decay in a forest soil. Microb. Ecol. 68: 212-221.   DOI
56 Bletz MC, Goedbloed DJ, Sanchez E, Reinhardt T, Tebbe CC, Bhuju S, et al. 2016. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7: 13699.   DOI
57 Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ. 2015. Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci. Total Environ. 505: 435-445.   DOI
58 De Schryver P, Vadstein O. 2014. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 8: 2360-2368.   DOI
59 Berg M, Stenuit B, Ho J, Wang A, Parke C, Knight M, et al. 2016. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J. 10: 1998-2009.   DOI
60 Liu H, Guo X, Gooneratne R, Lai R, Zeng C, Zhan F, et al. 2016. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 6: 24340.   DOI
61 Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, et al. 2011. Microbial manipulations to improve fish health and production - a Mediterranean perspective. Fish Shellfish Immunol. 30: 1-16.   DOI
62 Ray AK, Ghosh K, Ringo E. 2012. Enzyme-producing bacteria isolated from fish gut: a review. Aquac. Nutr. 18: 465-492.   DOI
63 Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, et al. 2007. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5: 1574-1586.
64 Dawood MAO, Koshio S, Ishikawa M, Yokoyama S, El Basuini MF, Hossain MS, et al. 2016. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol. 49: 275-285.   DOI