DOI QR코드

DOI QR Code

Comparison of Gut Microbiota between Lean and Obese Adult Thai Individuals

  • Received : 2017.11.28
  • Accepted : 2018.04.25
  • Published : 2018.09.28

Abstract

Current reports suggest that obesity is a serious global health issue. Emerging evidence has predicted strong links between obesity and the human gut microbiota. However, only a few such studies have been conducted in Asia, and the gut microbiota of lean and obese adult Asians remains largely unexplored. Here, we investigated the potential relationship between gut microbiota, body massindex (BMI), and metabolic parameters in adults from Thailand, where obesity is increasing rapidly. Fecal and blood samples were collected from 42 volunteers who were allocated into lean, overweight, and obese groups. The fecal microbiota was examined by quantitative PCR analysis. Bacteroidetes, Firmicutes, and Staphylococcus spp. and methanogens were most abundant in lean volunteers. Overweight volunteers majorly harbored Christensenella minuta and Akkermansia muciniphila, ${\gamma}-Proteobacteria$, and bacteria belonging to the genus Ruminococcus. Methanogens and bacteria belonging to the phylum Bacteroidetes were negatively correlated with adiposity markers (BMI and waist circumference), but positive correlated with high-density lipoprotein, suggesting that they can be used as leanness markers. While some of our results agree with those of previous reports, results regarding the contributions of specific taxa to obesity were inconsistent. This is the first study to report the adult gut microbiota in Southeast Asian populations using molecular techniques and biochemical markers and provides a foundation for future studies in this field.

Keywords

References

  1. Barlow GM, Yu A, Mathur R. 2015. Role of the gut microbiome in obesity and diabetes Mellitus. Nutr. Clin. Pract. 30: 787-797. https://doi.org/10.1177/0884533615609896
  2. Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF. et al. 2016. Gut microbiota, obesity and diabetes. Postgrad. Med. J. 92: 286-300. https://doi.org/10.1136/postgradmedj-2015-133285
  3. World Health Organization. 2000. Obesity: preventing and managing the global epidemic. World Health Organ. Tech. Rep. Ser. 894: 1-253.
  4. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D. et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761-1772. https://doi.org/10.2337/db06-1491
  5. World Health Organization. 2014. Global Status Report on noncommunicable diseases. http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf
  6. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL. et al. 2011. Quantification of the effect of energy imbalance on bodyweight. Lancet 378: 826-837. https://doi.org/10.1016/S0140-6736(11)60812-X
  7. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M. et al. 2012. Human gut microbiome viewed across age and geography. Nature 486: 222-227. https://doi.org/10.1038/nature11053
  8. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. 2016. From dietary fiber to host Physiology: short-chain fatty acids as key bacterial metabolites. Cell 165: 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041
  9. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031. https://doi.org/10.1038/nature05414
  10. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE. et al. 2009. A core gut microbiome in obese and lean twins. Nature 457: 480-487. https://doi.org/10.1038/nature07540
  11. Cani PD, Bibiloni R, Knauf C, Neyrinck AM, Delzenne NM, Burcelin R. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet induced obesity and diabetes in mice. Diabetes 57: 1470-1481. https://doi.org/10.2337/db07-1403
  12. Chassaing B, Gewirtz AT. 2016. Has provoking microbiota aggres- sion driven the obesity epidemic?. Bioessays 38: 122-128. https://doi.org/10.1002/bies.201500116
  13. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102: 11070-11075. https://doi.org/10.1073/pnas.0504978102
  14. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P. et al. 2008. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes (Lond) 32: 1720. https://doi.org/10.1038/ijo.2008.155
  15. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C. et al. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18: 190-195. https://doi.org/10.1038/oby.2009.167
  16. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022- 1023. https://doi.org/10.1038/4441022a
  17. Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AM, Ramakrishna BS. 2010. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br. J. Nutr. 103: 335-338. https://doi.org/10.1017/S0007114509992182
  18. Mai V, McCrary QM, Sinha R, Glei, M. 2009. Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutr. J. 8: 49. https://doi.org/10.1186/1475-2891-8-49
  19. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB. et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110: 9066-9071. https://doi.org/10.1073/pnas.1219451110
  20. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R. et al. 2014. Human genetics shape the gut microbiome. Cell 159: 789-799. https://doi.org/10.1016/j.cell.2014.09.053
  21. Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H. et al. 2015. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 15: 100. https://doi.org/10.1186/s12876-015-0330-2
  22. Tyakht AV, Kostryukova ES, Popenko AS, Belenikin MS, Pavlenko AV, Larin AK. et al. 2013. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 4: 2469. https://doi.org/10.1038/ncomms3469
  23. Zhang J, Guo Z, Xue Z, Sun Z, Zhang M, Wang L. et al. 2015. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J. 9: 1979-1990. https://doi.org/10.1038/ismej.2015.11
  24. World Health Organization. 2011. Noncommunicable diseases in the South-East Asia region, 1st Ed., New Delhi, India.
  25. Brakstad OG, Aasbakk K, Maeland JA. 1992. Detection of staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 30: 1654-1660.
  26. Yamborisut U, Riabroy N, Phonrat B, Tungtrongchitr R. 2009. Serum leptin levels and body composition in obese Thai children. Southeast Asian J. Trop. Med. Public. Health. 40: 544-552.
  27. Shiwaku K, Nogi A, Kitajima K, Anuurad E, Enkhmaa B, Yamasaki M. et al. 2005. Prevalence of the metabolic syndrome using the modified ATP III definitions for workers in Japan, Korea and Mongolia. J. Occup. Health. 47: 126-135. https://doi.org/10.1539/joh.47.126
  28. Ramachandran A, Ma RCW, Snehalatha C. 2010. Diabetes in Asia. Lancet 375: 408-418. https://doi.org/10.1016/S0140-6736(09)60937-5
  29. Ramachandran A, Chamukuttan S, Shetty SA, Arun N, Susairaj P. 2012. Obesity in Asia-is it different from rest of the world. Diabetes Metab. Res. Rev. 28: 47-51. https://doi.org/10.1002/dmrr.2353
  30. World Health Organization Expert Consultation. 2004. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363: 157-163. https://doi.org/10.1016/S0140-6736(03)15268-3
  31. Sekirov I, Russell SL, Antunes LC, Finlay BB. 2010. Gut microbiota in health and disease. Physiol. Rev. 90: 859-904. https://doi.org/10.1152/physrev.00045.2009
  32. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. 2009. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One 4: https://doi.org/10.1371/ journal.pone.0007125.
  33. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL. et al. 2010. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and lowgrade inflammation markers. Diabetes 59: 3049-3057. https://doi.org/10.2337/db10-0253
  34. Karlsson CL, Onnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. 2012. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20: 2257-2261. https://doi.org/10.1038/oby.2012.110
  35. Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C. et al. 2013. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut. Pathog. 5: 10. https://doi.org/10.1186/1757-4749-5-10
  36. Yan M, Song M-M, Bai R-X, Cheng S, Yan W-M. 2016. Effect of Roux-en-Y gastric bypass surgery on intestinal Akkermansia muciniphila. World J. Gastrointest. Surg. 8: 301-307.
  37. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO. et al. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 65: 426-436. https://doi.org/10.1136/gutjnl-2014-308778
  38. Ottman N, Huuskonen L, Reunanen J, Boeren S, Klievink J, Smidt S. et al. 2016. Characterization of outer membrane proteome of Akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine. Front. Microbiol. 7: 1157.
  39. Brahe LK, Le Chatelier E, Prifti E, Pons N, Kennedy S, Blædel T. et al. 2015. Dietary modulation of the gut microbiota a randomised controlled trial in obese postmenopausal women. Br. J .Nutr. 114: 406-417. https://doi.org/10.1017/S0007114515001786
  40. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G. et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500: 541. https://doi.org/10.1038/nature12506
  41. De Gregoris TB, Aldred N, Clare AS, Burgess JG. 2011. Improvement of phylum and class-specific primers for real-time PCR quantification of bacterial taxa. J. Microbiol. Methods. 86: 351- 356. https://doi.org/10.1016/j.mimet.2011.06.010
  42. Bartosch S, Fite A, Macfarlane GT, McMurdo MET. 2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 70: 3575-3581. https://doi.org/10.1128/AEM.70.6.3575-3581.2004
  43. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. 2009. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 101: 541-550.
  44. Walker AW, Duncan SH, Leitch ECM, Child MW, Flint HJ. 2005. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 71: 3692-3700. https://doi.org/10.1128/AEM.71.7.3692-3700.2005
  45. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP. 2001. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 2578-2585. https://doi.org/10.1128/AEM.67.6.2578-2585.2001
  46. Heilig H, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68: 114-123. https://doi.org/10.1128/AEM.68.1.114-123.2002
  47. Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A. 2004. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97: 1166-1177. https://doi.org/10.1111/j.1365-2672.2004.02409.x
  48. Mackie RI, Aminov RI, Hu WP, Klieve AV, Ouwerkerk D, Sundset MA. et al. 2003. Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl. Environ. Microbiol. 69: 6808- 6815. https://doi.org/10.1128/AEM.69.11.6808-6815.2003
  49. Yanagita K, Manome A, Meng XY, Hanada S, Kanagawa T, Tsuchida T. et al. 2003. Flow cytometric sorting, phylogenetic analysis and in situ detection of Oscillospira guillermondii, a large, morphologically conspicuous but uncultured ruminal bacterium. Int. J. Syst. Evol. Microbiol. 53: 1609-1614. https://doi.org/10.1099/ijs.0.02541-0
  50. Wang RF, Cao WW, Cerniglia CE. 1996. PCR detection and quanti- tation of predominant anaerobic bacteria in human and animal fecal samples. Appl. Environ. Microbiol. 62: 1242-1247.
  51. Walter J, Margosch D, Hammes WP, Hertel C. 2002. Detection of Fusobacterium species in human feces using genus-specific PCR primers and denaturing gradient gel electrophoresis. Microb. Ecol. Health Dis. 14: 129-132. https://doi.org/10.1080/089106002320644294
  52. Collado MC, Derrien M, Isolauri E. 2007. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73: 7767-7770. https://doi.org/10.1128/AEM.01477-07
  53. Hook SE, Northwood KS, Wright ADG, McBride BW. 2009. Longterm monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 75: 374-380. https://doi.org/10.1128/AEM.01672-08

Cited by

  1. Profile of the gut microbiota of adults with obesity: a systematic review vol.74, pp.9, 2018, https://doi.org/10.1038/s41430-020-0607-6