• Title/Summary/Keyword: Growth conditions

Search Result 6,808, Processing Time 0.04 seconds

Substrate-Dependent Auxin Production by Rhizobium phaseoli Improves the Growth and Yield of Vigna radiata L. Under Salt Stress Conditions

  • Zahir, Z.A.;Shah, M. Kashif;Naveed, M.;Akhter, M. Javed
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1288-1294
    • /
    • 2010
  • Rhizobium phaseoli strains were isolated from the mung bean (Vigna radiata L.) nodules, and the most salt tolerant and high auxin producing rhizobial isolate N20 was evaluated in the presence and absence of L-tryptophan (L-TRP) for improving the growth and yield of mung bean under saline conditions in a pot experiment. Mung bean seeds were inoculated with peat-based inoculum and NP fertilizers were applied at 30-60 kg/ha, respectively. Results revealed that imposition of salinity reduced the growth and yield of mung bean. On the contrary, the separate application of L-TRP and Rhizobium appeared to mitigate the adverse effects of salt stress. However, their combined application produced more pronounced effects and increased the plant height (28.2%), number of nodules per plant (71.4%), plant biomass (61.2%), grain yield (65.3%), and grain nitrogen concentration (22.4%) compared with untreated control. The growth promotion effect might be due to higher auxin production in the rhizosphere and improved mineral uptake that reduced the adverse effects of salinity. The results imply that supplementing Rhizobium inoculation with L-TRP could be a useful approach for improving the growth and yield of mung bean under salt stress conditions.

Conditions of Skull melting system for rutile single crystals growth (루틸단결정 성장을 위한 스컬용융시스템의 조건)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.141-148
    • /
    • 2006
  • Skull melting method can be a good candidate for growing oxide single crystals with high quality and for mass production because of its low production costs and high yield through recycling of crust. In this study, rutile single crystals were frown by the skull melting method and ingot characteristics with the variation of different growth conditions has been investigated. Conditions for high quality rutile ingot growth were used for producing cold-crucible size of ${\Phi}12cm{\times}H14cm$, capacity of 3000 pF tank condenser, work frequency of 2.84 MHz, melt-dwelling time of 9hrs and growing speed of 2 mm/h.

Effect of Low-light Intensity on Growth, Yield and Quality of Strawberries (광부족 조건이 딸기의 생육 및 생산성에 미치는 영향)

  • Lee, Gyu-Bin;Lee, Jung-Eun;Je, Byoung-Il;Lee, Yong-Jae;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.29 no.2
    • /
    • pp.167-175
    • /
    • 2020
  • The purpose of this study was to investigate the effect of shading on the growth and productivity of strawberries. Photosynthesis was normally achieved under natural light without shading treatment, and vegetative growth of under- and aboveground part of strawberry plants were excellent. Strawberry fruit productivity and quality were different depending on shading conditions. In natural light, they were improved possibly by balanced vegetative and reproductive growth. However, under light-shading conditions with insufficient sunshine, photosynthetic activity deteriorated and carbohydrate production was therfore inadequate; this adversely affected plant height and quality. The negative effects were more pronounced at 50% shading condition. Shading treatments resulting in insufficient sunshine had a detrimental impact on plant productivity and growth; this implies that proper shading conditions could heip improve yield and fruit quality.

The Optimal Culture Conditions for the Mycelial Growth of Oudemansiella radicata

  • Kim, Sang-Beom;Kim, Seong-Hwan;Lee, Kyung-Rim;Shim, Jae-Ouk;Lee, Min-Woong;Shim, Mi-Ja;Lee, U-Youn;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.33 no.4
    • /
    • pp.230-234
    • /
    • 2005
  • Oudemansiella radicata, one of edible mushrooms belonging to Tricholomataceae of Basidiomycota, has been known to exhibit outstanding therapeutic effects on the hypertension caused by high blood pressure and inhibitory effects on the sarcoma 180 and Erhrlich carcinoma of mice. As one of preliminary experiments for producing fruiting-body of O. radicata, this study was carried out to obtain the basic information for culture conditions of mycelial growth of the fungus. The optimal temperature and pH for the mycelial growth were $25^{\circ}C$ and pH 6, respectively. The medium for favorable mycelial growth of O. radicata was shown in the Lilly medium, whereas compact mycelial density was found in Hamada medium. The carbon and nitrogen sources promoting for mycelial growth of O. radicata were xylose and alanine, respectively. The optimum C/N ratio was about 20 : 1 in case that 3% glucose was supplimented to the basal medium as a carbon source.

A Study on the Management Plan of Water Environment of Ferns in the Interior Landscape (실내조경에 있어서 양치식물의 수분환경 관리방안에 관한 연구)

  • 주진희;방광자;설종호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.122-131
    • /
    • 1999
  • Indoor environments are usually less than optimal for the growth of ferns, especially in regards to the water condition. These studies were performed to investigate responses involved in causing growth of ferns and presume management plan against the water deficit under indoor conditions. The effect of air humidity and soil moisture on the ferns was examined in Adiantume raddianum and Selaginella kraussiana. Results of experiments are as follows; 1. Under a low humidity condition, having a 25-50% RH. ornamental value of ferns decreased much more than under a 90% RH. Under a low soil moisture, such as sand treatment, ornamental value of ferns also decreased. 2. Leaf chlorophyll content, water content and stomata situations increased as air humidity and soil moisture went up. 3. Even if air humidity and soil water were not enough for ferns growth, the extending of irrigation cycle was helpful. 4. Under extremely low air humidity conditions, some water management, namely, using water holding soil or extending of irrigation cycle was desirable. Other methods of increasing air humidity, including water instruments such as ornamental pools, waterfalls, or fountains, grouping plants together were also helpful. But spraying water on leaves increased injury to ferns growth because of excess evaporation from the leaves. Though these studies, we learn that ferns are susceptible to water condition such as air humidity, soil water and water management. If other environmental factos are maintained with optimal conditions, water condition plays an important role in ferns growth in indoor environments.

  • PDF

Effect of Culture Conditions on Growth and Production of Docosahexaenoic Acid (DHA) using Thraustochytrium aureum ATCC 34304

  • Hur Byung-Ki;Cho Dae-Won;Kim Ho-Jung;Park Chun-Ik;Suh Hyung-Joon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.10-15
    • /
    • 2002
  • Environmental and medium factors were investigated as basic data for optimizing DHA production when using Thraustochytrium aureum. To study the effect of environmental conditions, the rotation speed and culture temperature were changed. Plus the trend of the growth characteristics, lipid content in the biomass, and DHA content in lipids were evaluated according to various initial glucose concentrations. The biomass, lipid, and DHA analyses showed that the physiological characteristics of T. aureum were closely related with the environmental and medium conditions, as in the case of other marine microorganisms. For example, a low rotation speed of 50 rpm lowered the cell growth rate as well as the DHA content in the lipids. A low temperature had a negative effect on the cell growth, yet a positive effect on the lipid content in the biomass. Different initial glucose concentrations had no effect on the lipid content in the biomass or DHA content in the lipids, yet did affect the cell growth. Accordingly, these results show that environmental and medium factors must be synthetically considered in order to optimize DHA production when using T. aureum.

Culture Conditions on the Early Growth of Hizikia fusiformis(Phaeophyta) (톳(Hizikia fusiformis)의 초기생장에 대한 배양조건)

  • 황은경;박찬선;손철현
    • Journal of Aquaculture
    • /
    • v.10 no.2
    • /
    • pp.199-211
    • /
    • 1997
  • Effects of light and temperature on the early growth of Hizikia fusiformis were investigated for establishment of artificial seed production. Young germlings were cultured for 70 days under different culutre conditions : light intensities (500, 1, 000, 2, 000, 4, 000, 8, 000 lux), photoperiods (8 : 16, 12 : 12, 16 : 8, (L : D)) and temperatue (10, 15, 20, 25, $30^{\circ}C$). Growth of the germlings was facilitated in 2, 000~4, 000 lux of light intensities, 16 : 8 (L:D) of photoperiods and 15~$20^{\circ}C$ of temperature. Culture conditions were revealed for the mass culture of artificial seeds of effective early growth in Hizikia cultivation.

  • PDF

Optimization of Culture Conditions for Production of Pneumococcal Capsular Polysaccharide Type IV

  • Kim, S.N.;Min, K.K.;Choi, I.H.;Kim, S.W.;Pyo, S.N.;Rhee, D.K.
    • Archives of Pharmacal Research
    • /
    • v.19 no.3
    • /
    • pp.173-177
    • /
    • 1996
  • The Pneumococcus, Streptococcus pneumoniae, has an ample polysaccharide (PS) capsule that is highly antigenic and is the main virulence factor of the organism. The capsular PS is the source of PS vaccine. This investigation was undertaken to optimize the culture conditions for the production of capsular PS by type 4 pneumococcus. Among several culture media, brain heart infusion (BHI) and Casitone based medium were found to support luxuriant growth of pneumococcus type 4 at the same level. Therefore in this study, the Casitone based medium was used to study optimization of the culture condition because of BHI broth's high cost and complex nature. The phase of growth which accomodated maximum PS production was exponential phase. Concentrations of glucose greater than 0.8% did not enhance growth or PS production. Substitution of nitrogen sources with other resources or supplementation of various concentrations of metal ion (with the exception of calcium, copper, and magnesium ions) had adverse effects on growth and PS production. On the other hand, low level aeration and supplementation of 3 mg/l concentration of asparagine, phenylalanine, or threonine were beneficial for increased PS production. The synergistic effect of all the favorable conditions observed in pneumococcal growth assays provided a two-fold cumulative increase in capsular PS production.

  • PDF

Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient

  • Kim, Ji Hyeon;Sim, Jiyeon;Kim, Hyun-Jung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.380-388
    • /
    • 2018
  • Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro, we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

Growth characteristics of 4H-SiC homoepitaxial layers grown by thermal CVD (화학기상증착법으로 성장시킨 4H-SiC 동종박막의 성장 특성)

  • Jang, Seong-Joo;Jeong, Moon-Taeg;Seol, Woon-Hag;Park, Ju-Hoon
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.271-284
    • /
    • 1999
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides (SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single-crystalline 4H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 4H-SiC homoepitaxial layers using a SiC-uncoated graphite susceptor that utilized Mo-plates was obtained. The CVD growth was performed in an RF-induction heated atmospheric pressure chamber and carried out using off-oriented substrates prepared by a modified Lely method. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, Raman spectroscopy, photoluminescence(PL), scanning electron microscopy (SEM) and other techniques were utilized. The best quality of 4H-SiC homoepitaxial layers was observed in conditions of growth temperature 1500$^{\circ}C$ and C/Si flow ratio 2.0 of C3H3 0.2sccm & SiH4 0.3sccm. The growth rate of epilayers was about 1.0$\mu\textrm{m}$/h in the above growth condition.

  • PDF