Browse > Article
http://dx.doi.org/10.4014/jmb.1002.02010

Substrate-Dependent Auxin Production by Rhizobium phaseoli Improves the Growth and Yield of Vigna radiata L. Under Salt Stress Conditions  

Zahir, Z.A. (Institute of Soil and Environmental Sciences, University of Agriculture)
Shah, M. Kashif (Institute of Soil and Environmental Sciences, University of Agriculture)
Naveed, M. (Institute of Soil and Environmental Sciences, University of Agriculture)
Akhter, M. Javed (Institute of Soil and Environmental Sciences, University of Agriculture)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.9, 2010 , pp. 1288-1294 More about this Journal
Abstract
Rhizobium phaseoli strains were isolated from the mung bean (Vigna radiata L.) nodules, and the most salt tolerant and high auxin producing rhizobial isolate N20 was evaluated in the presence and absence of L-tryptophan (L-TRP) for improving the growth and yield of mung bean under saline conditions in a pot experiment. Mung bean seeds were inoculated with peat-based inoculum and NP fertilizers were applied at 30-60 kg/ha, respectively. Results revealed that imposition of salinity reduced the growth and yield of mung bean. On the contrary, the separate application of L-TRP and Rhizobium appeared to mitigate the adverse effects of salt stress. However, their combined application produced more pronounced effects and increased the plant height (28.2%), number of nodules per plant (71.4%), plant biomass (61.2%), grain yield (65.3%), and grain nitrogen concentration (22.4%) compared with untreated control. The growth promotion effect might be due to higher auxin production in the rhizosphere and improved mineral uptake that reduced the adverse effects of salinity. The results imply that supplementing Rhizobium inoculation with L-TRP could be a useful approach for improving the growth and yield of mung bean under salt stress conditions.
Keywords
L-Tryptophan; Rhizobium phaseoli; inoculation; salt stress; mung bean;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Datta, K. S., S. K. Varma, R. Angrish, B. Kumar, and P. Kumari. 1997. Alleviation of salt stress by plant growth regulators in Triticum aestivum. Biol. Planta 40: 269-275.   DOI   ScienceOn
2 Manchanda, G. and G. Neera. 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol. Planta 30: 595-618.   DOI   ScienceOn
3 Datta, C. and P. S. Basu. 2000. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155: 123-127.   DOI   ScienceOn
4 Azooz, M. M., M. A. Shaddad, and A. A. Abdel-Latef. 2004. The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. Indian J. Plant Physiol. 9: 1-8.
5 Bala, N., P. K. Sharma, and K. Lakshminarayana. 1990. Nodulation and nitrogen fixation by salinity-tolerant rhizobia in symbiosis with tree legumes. Agric. Ecosyst. Environ. 33: 33-46.   DOI   ScienceOn
6 Ashraf, M. and P. J. C. Harris. 2005. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. Haworth Press, New York.
7 Bianco, C., E. Imperlini, R. Calogero, B. Senatore, A. Amoresano, A. Carpentieri, P. Pucci, and R. Defez. 2006. Indole-3-acetic acid improves Escherichia coli's defenses to stress. Arch. Microbiol. 185: 373-382.   DOI   ScienceOn
8 Bhattacharyya, R. N. and P. S. Basu. 1997. Bioproduction of indole acetic acid by a Rhizobium sp. from the root nodules of Desmodium gangeticum. Acta Microbiol. Immunol. Hung. 44: 109-118.
9 Arshad, M. and W. T. Frankenberger Jr. 1990. Response of Zea mays L. and Lycopersicon esculentum to the ethylene precursor, L-methionine and L-ethionine applied to soil. Plant Soil 122: 219-227.   DOI
10 Arshad, M. and W. T. Frankenberger Jr. 1991. Microbial production of plant hormones. Plant Soil 133: 1-8.   DOI
11 Raghavan, C., E. K. Ong, M. J. Dalling, and T. V. Stevenson. 2006. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Func. Integ. Genomics 6: 60-70.   DOI   ScienceOn
12 Zahir, Z. A., S. A. Abbas, M. Khalid, and M. Arshad. 2000. Substrate dependent microbially derived plant hormones for improving growth of maize seedlings. Pak. J. Biol. Sci. 3: 289-291.   DOI
13 Zahran, H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63: 968-989.
14 Zhu, Y., G. Shearer, and D. Kohl. 1992. Proline fed to intact soybean plants influences acetylene reduction activity and content and metabolism of porline in bacteroids. Plant Physiol. 98: 1020-1028.   DOI   ScienceOn
15 Steel, R. G. D., J. H. Torrie, and D. A. Dicky. 1997. Principles and Procedures of Statistics - A Biometrical Approach, pp 204-227. 3rd Ed. McGraw Hill Book International Co., Singapore.
16 Vincent, J. M. 1970. Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook No. 15. Blackwell Scientific Publications, Oxford.
17 Vinocur, B. and A. Altman. 2005. Recent advances in engineering plant tolerance to abiotic stress; achievement and limitations. Curr. Opin. Biotechnol. 16: 123-132.   DOI   ScienceOn
18 Ryan, J., G. Estefan, and A. Rashid. 2001. Soil and Plant Analysis: Laboratory Manual. p. 172. International Centre for Agricultural Research in Dry Areas (ICARDA), Aleppo, Syria.
19 Sarwar, M., M. Arshad, D. A. Martens, and W. T. Frankenberger Jr. 1992. Tryptophan dependent biosynthesis of auxins in soil. Plant Soil 147: 207-215.   DOI
20 Singh, G. and S. Jain. 1982. Effect of some growth regulators on certain biochemical parameters during seed development in chickpea under salinity. Indian J. Plant Physiol. 25: 167-179.
21 Rao, D. L. N. and P. C. Sharma. 1995. Alleviation of salinity stress in chickpea by Rhizobium inoculation or nitrate supply. Biol. Planta 37: 405-410.   DOI
22 Russell, A. D., W. B. Hugo, and G. A. J. Ayliffo. 1982. Principles and Practices of Disinfection, Preservation and Sterilization. Black Wall Scientific, London.
23 Hussain, A., M. Khalid, A. Latif, and K. Hussain. 1989. Effect of L-TRP on growth, nodulation and N-content of Albizia lebbeck. Nitrogen Fixing Tree Res. Report 7: 69-72.
24 Mirza, B. S., M. S. Mirza, A. Bano, and K. A. Malik. 2007. Coinoculatoin of chickpea with Rhizobium isolates from roots and nodules and phytohormones-producing Enterobacter strains. Aust. J. Exp. Agric. 47: 1008-1015.   DOI   ScienceOn
25 Nickel, L. G. 1982. Plant Growth Regulators: Agriculture Uses. Springer-Verlag, New York.
26 Parida, A. K. and A. B. DAS. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Safety 60: 324-349.   DOI   ScienceOn
27 Lloret, J., L. Bolanos, M. M. Lucas, J. M. Peart, N. J. Brewin, I. Bonilla, and R. Rivilla. 1995. Ionic stress and osmotic pressure induce different alternations in Rhizobium meliloti strain. Appl. Environ. Microbiol. 61: 3701-3705.
28 Malhotra, M. and S. Srivastava. 2006. Targeted engineering of Azospirillum brasiliense with indole acetamide pathway for indoleacetic acid over-expression. Can. J. Microbiol. 52: 1078-1084.   DOI   ScienceOn
29 Mensah, J. K., P. A. Akomeah, and C. Diejemaoh. 2004. The influnce of salinity and pH on the germination and seedling establishment of Leucana leucocephala. Indian J. Agric. Res. 38: 94-100.
30 Hafeez, F. Y., Z. Aslam, and K. A. Malik. 1987. Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vigna radiata. Plant Soil 106: 233-236.
31 Hussain, I., M. Arshad, Z. A. Zahir, M. Javed, and A. Hussain. 1995. Substrate dependent microbial production of auxins and their influence on the growth and nodulation of lentil. Pakistan J. Agric. Sci. 32: 149-152.
32 Ghosh, S. and P. S. Basu. 2006. Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol. Res. 161: 362-366.   DOI   ScienceOn
33 Ferreras, A. D., R. P. Arnedo, A. Becker, J. Olivares, M. J. Soto, and J. Sanjuan. 2006. Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J. Bacteriol. 188: 7617-7621.   DOI   ScienceOn