DOI QR코드

DOI QR Code

Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient

  • Kim, Ji Hyeon (Laboratory of Molecular Pharmacology and Stem Cells, College of Pharmacy, Chung-Ang University) ;
  • Sim, Jiyeon (Laboratory of Molecular Pharmacology and Stem Cells, College of Pharmacy, Chung-Ang University) ;
  • Kim, Hyun-Jung (Laboratory of Molecular Pharmacology and Stem Cells, College of Pharmacy, Chung-Ang University)
  • Received : 2018.01.02
  • Accepted : 2018.01.23
  • Published : 2018.07.01

Abstract

Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro, we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

Keywords

References

  1. Abematsu, M., Smith, I. and Nakashima, K. (2006) Mechanisms of neural stem cell fate determination: extracellular cues and intracellular programs. Curr. Stem Cell Res. Ther. 1, 267-277. https://doi.org/10.2174/157488806776956887
  2. Abhyankar, V. V. and Beebe, D. J. (2007) Spatiotemporal micropatterning of cells on arbitrary substrates. Anal. Chem. 79, 4066-4073. https://doi.org/10.1021/ac062371p
  3. Alenzi, F. Q. B. and Bahkali, A. H. (2011) Stem cells: biology and clinical potential. Afr. J. Biotechnol. 10, 19929-19940.
  4. Altmann, C. R. and Brivanlou, A. H. (2001) Neural patterning in the vertebrate embryo. Int. Rev. Cytol. 203, 447-482.
  5. Bavister, B. D. (1995) Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91-148. https://doi.org/10.1093/humupd/1.2.91
  6. Beebe, D. J., Mensing, G. A. and Walker, G. M. (2002) Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261-286. https://doi.org/10.1146/annurev.bioeng.4.112601.125916
  7. Capowski, E. E., Schneider, B. L., Ebert, A. D., Seehus, C. R., Szulc, J., Zufferey, R., Aebischer, P. and Svendsen, C. N. (2007) Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy. J. Neurosci. Methods 163, 338-349. https://doi.org/10.1016/j.jneumeth.2007.02.022
  8. Cha, K. J., Kong, S. Y., Lee, J. S., Kim, H. W., Shin, J. Y., La, M., Han, B. W., Kim, D. S. and Kim, H. J. (2017) Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface. Sci. Rep. 7, 13077. https://doi.org/10.1038/s41598-017-13372-6
  9. Chadi, G., Moller, A., Rosen, L., Janson, A. M., Agnati, L. A., Goldstein, M., Ogren, S. O., Pettersson, R. F. and Fuxe, K. (1993) Protective actions of human recombinant basic fibroblast growth factor on MPTP-lesioned nigrostriatal dopamine neurons after intraventricular infusion. Exp. Brain Res. 97, 145-158.
  10. Chung, B. G., Flanagan, L. A., Rhee, S. W., Schwartz, P. H., Lee, A. P., Monuki, E. S. and Jeon, N. L. (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5, 401-406. https://doi.org/10.1039/b417651k
  11. Chung, B. G., Park, J. W., Hu, J. S., Huang, C., Monuki, E. S. and Jeon, N. L. (2007) A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods. BMC Biotechnol. 7, 60. https://doi.org/10.1186/1472-6750-7-60
  12. Clarke, D. L., Johansson, C. B., Wilbertz, J., Veress, B., Nilsson, E., Karlstrom, H., Lendahl, U. and Frisen, J. (2000) Generalized potential of adult neural stem cells. Science 288, 1660-1663. https://doi.org/10.1126/science.288.5471.1660
  13. Dorsky, R. I., Moon, R. T. and Raible, D. W. (2000) Environmental signals and cell fate specification in premigratory neural crest. Bioessays 22, 708-716. https://doi.org/10.1002/1521-1878(200008)22:8<708::AID-BIES4>3.0.CO;2-N
  14. Farah, M. H., Olson, J. M., Sucic, H. B., Hume, R. I., Tapscott, S. J. and Turner, D. L. (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693-702.
  15. Gage, F. H. (2000) Mammalian neural stem cells. Science 287, 1433-1438. https://doi.org/10.1126/science.287.5457.1433
  16. Germain, N., Banda, E. and Grabel, L. (2010) Embryonic stem cell neurogenesis and neural specification. J. Cell. Biochem. 111, 535-542. https://doi.org/10.1002/jcb.22747
  17. Gurdon, J. B. and Bourillot, P. Y. (2001) Morphogen gradient interpretation. Nature 413, 797-803. https://doi.org/10.1038/35101500
  18. Hebert, J. M. and Fishell, G. (2008) The genetics of early telencephalon patterning: some assembly required. Nat. Rev. Neurosci. 9, 678-685.
  19. Jessell, T. M. (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20-29. https://doi.org/10.1038/35049541
  20. Kim, H. J. (2011) Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons. Biochim. Biophys. Acta 1812, 1-11. https://doi.org/10.1016/j.bbadis.2010.08.006
  21. Kim, H. J. and Jin, C. Y. (2012) Stem cells in drug screening for neurodegenerative disease. Korean J. Physiol. Pharmacol. 16, 1-9. https://doi.org/10.4196/kjpp.2012.16.1.1
  22. Kim, H. J., McMillan, E., Han, F. and Svendsen, C. N. (2009) Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem Cells 27, 390-398. https://doi.org/10.1634/stemcells.2007-1047
  23. Kim, H. J., Sugimori, M., Nakafuku, M. and Svendsen, C. N. (2007) Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1. Exp. Neurol. 203, 394-405. https://doi.org/10.1016/j.expneurol.2006.08.029
  24. Kong, S. Y., Kim, W., Lee, H. R. and Kim, H. J. (2017) The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells. FASEB J. 32, 1108-1119.
  25. Kong, S. Y., Park, M. H., Lee, M., Kim, J. O., Lee, H. R., Han, B. W., Svendsen, C. N., Sung, S. H. and Kim, H. J. (2015) Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells. PLoS ONE 10, e0118188. https://doi.org/10.1371/journal.pone.0118188
  26. Lee, H. R., Farhanullah, Lee, J., Jajoo, R., Kong, S. Y., Shin, J. Y., Kim, J. O. and Kim, H. J. (2016) Discovery of a small molecule that enhances astrocytogenesis by activation of stat3, smad1/5/8, and erk1/2 via induction of cytokines in neural stem cells. ACS Chem. Neurosci. 7, 90-99. https://doi.org/10.1021/acschemneuro.5b00243
  27. Lee, S. K. and Pfaff, S. L. (2001) Transcriptional networks regulating neuronal identity in the developing spinal cord. Nat. Neurosci. 4, 1183-1191. https://doi.org/10.1038/nn750
  28. Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959-969.
  29. Li Jeon, N., Baskaran, H., Dertinger, S. K., Whitesides, G. M., Van de Water, L. and Toner, M. (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20, 826-830. https://doi.org/10.1038/nbt712
  30. Megason, S. G. and McMahon, A. P. (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129, 2087-2098.
  31. Muller, F. J., Snyder, E. Y. and Loring, J. F. (2006) Gene therapy: can neural stem cells deliver? Nat. Rev. Neurosci. 7, 75-84. https://doi.org/10.1038/nrn1829
  32. Nakata, N., Kato, H. and Kogure, K. (1993) Protective effects of basic fibroblast growth factor against hippocampal neuronal damage following cerebral ischemia in the gerbil. Brain Res. 605, 354-356. https://doi.org/10.1016/0006-8993(93)91766-L
  33. Nelson, A. D. and Svendsen, C. N. (2006) Low concentrations of extracellular FGF-2 are sufficient but not essential for neurogenesis from human neural progenitor cells. Mol. Cell. Neurosci. 33, 29-35. https://doi.org/10.1016/j.mcn.2006.06.003
  34. Ng, J. M., Gitlin, I., Stroock, A. D. and Whitesides, G. M. (2002) Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23, 3461-3473. https://doi.org/10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8
  35. Nishii, K., Brodin, E., Renshaw, T., Weesner, R., Moran, E., Soker, S. and Sparks, J. L. (2018) Shear stress upregulates regeneration-related immediate early genes in liver progenitors in 3D ECM-like microenvironments. J. Cell. Physiol. 233, 4272-4281. https://doi.org/10.1002/jcp.26246
  36. Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F. and Gage, F. H. (1999) Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487-8497. https://doi.org/10.1523/JNEUROSCI.19-19-08487.1999
  37. Panchision, D. M. and McKay, R. D. (2002) The control of neural stem cells by morphogenic signals. Curr. Opin. Genet. Dev. 12, 478-487. https://doi.org/10.1016/S0959-437X(02)00329-5
  38. Park, J. Y., Kim, S. K., Woo, D. H., Lee, E. J., Kim, J. H. and Lee, S. H. (2009) Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 27, 2646-2654. https://doi.org/10.1002/stem.202
  39. Park, T. H. and Shuler, M. L. (2003) Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19, 243-253. https://doi.org/10.1021/bp020143k
  40. Parras, C. M., Galli, R., Britz, O., Soares, S., Galichet, C., Battiste, J., Johnson, J. E., Nakafuku, M., Vescovi, A. and Guillemot, F. (2004) Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495-4505. https://doi.org/10.1038/sj.emboj.7600447
  41. Qian, X., Davis, A. A., Goderie, S. K. and Temple, S. (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81-93. https://doi.org/10.1016/S0896-6273(01)80048-9
  42. Rallu, M., Corbin, J. G. and Fishell, G. (2002) Parsing the prosencephalon. Nat. Rev. Neurosci. 3, 943-951. https://doi.org/10.1038/nrn989
  43. Ribes, V., Stutzmann, F., Bianchetti, L., Guillemot, F., Dolle, P. and Le Roux, I. (2008) Combinatorial signalling controls Neurogenin2 expression at the onset of spinal neurogenesis. Dev. Biol. 321, 470-481. https://doi.org/10.1016/j.ydbio.2008.06.003
  44. Rogulja, D. and Irvine, K. D. (2005) Regulation of cell proliferation by a morphogen gradient. Cell 123, 449-461. https://doi.org/10.1016/j.cell.2005.08.030
  45. Sia, S. K. and Whitesides, G. M. (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563-3576. https://doi.org/10.1002/elps.200305584
  46. Thoma, E. C., Wischmeyer, E., Offen, N., Maurus, K., Siren, A. L., Schartl, M. and Wagner, T. U. (2012) Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS ONE 7, e38651. https://doi.org/10.1371/journal.pone.0038651
  47. Tropepe, V., Sibilia, M., Ciruna, B. G., Rossant, J., Wagner, E. F. and van der Kooy, D. (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166-188. https://doi.org/10.1006/dbio.1998.9192
  48. Walker, G. M., Zeringue, H. C. and Beebe, D. J. (2004) Microenvironment design considerations for cellular scale studies. Lab Chip 4, 91-97. https://doi.org/10.1039/b311214d
  49. Wang, S. J., Saadi, W., Lin, F., Minh-Canh Nguyen, C. and Li Jeon, N. (2004) Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp. Cell Res. 300, 180-189. https://doi.org/10.1016/j.yexcr.2004.06.030
  50. Xu, J., Liu, Z. and Ornitz, D. M. (2000) Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 127, 1833-1843.

Cited by

  1. Application of microfluidic systems for neural differentiation of cells vol.2, pp.4, 2019, https://doi.org/10.33218/prnano2(4).181127.2
  2. Regulation of Neural Stem Cell Fate by Natural Products vol.27, pp.1, 2018, https://doi.org/10.4062/biomolther.2018.184
  3. A simple layer-stacking technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels vol.11, pp.2, 2018, https://doi.org/10.1088/1758-5090/ab08b5
  4. Functional Group-Dependent Induction of Astrocytogenesis and Neurogenesis by Flavone Derivatives vol.9, pp.12, 2018, https://doi.org/10.3390/biom9120812
  5. The KDM5 Inhibitor KDM5-C70 Induces Astrocyte Differentiation in Rat Neural Stem Cells vol.12, pp.3, 2021, https://doi.org/10.1021/acschemneuro.0c00613
  6. High-Throughput Routes to Biomaterials Discovery vol.121, pp.18, 2018, https://doi.org/10.1021/acs.chemrev.0c01026
  7. A microfabricated multi-compartment device for neuron and Schwann cell differentiation vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-86300-4