Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.001

Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient  

Kim, Ji Hyeon (Laboratory of Molecular Pharmacology and Stem Cells, College of Pharmacy, Chung-Ang University)
Sim, Jiyeon (Laboratory of Molecular Pharmacology and Stem Cells, College of Pharmacy, Chung-Ang University)
Kim, Hyun-Jung (Laboratory of Molecular Pharmacology and Stem Cells, College of Pharmacy, Chung-Ang University)
Publication Information
Biomolecules & Therapeutics / v.26, no.4, 2018 , pp. 380-388 More about this Journal
Abstract
Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro, we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.
Keywords
Neural stem cells; Microfluidic chip; Growth factor-gradient; Differentiation; Proliferation; Neurogenesis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Beebe, D. J., Mensing, G. A. and Walker, G. M. (2002) Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261-286.   DOI
2 Capowski, E. E., Schneider, B. L., Ebert, A. D., Seehus, C. R., Szulc, J., Zufferey, R., Aebischer, P. and Svendsen, C. N. (2007) Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy. J. Neurosci. Methods 163, 338-349.   DOI
3 Cha, K. J., Kong, S. Y., Lee, J. S., Kim, H. W., Shin, J. Y., La, M., Han, B. W., Kim, D. S. and Kim, H. J. (2017) Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface. Sci. Rep. 7, 13077.   DOI
4 Chadi, G., Moller, A., Rosen, L., Janson, A. M., Agnati, L. A., Goldstein, M., Ogren, S. O., Pettersson, R. F. and Fuxe, K. (1993) Protective actions of human recombinant basic fibroblast growth factor on MPTP-lesioned nigrostriatal dopamine neurons after intraventricular infusion. Exp. Brain Res. 97, 145-158.
5 Chung, B. G., Flanagan, L. A., Rhee, S. W., Schwartz, P. H., Lee, A. P., Monuki, E. S. and Jeon, N. L. (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5, 401-406.   DOI
6 Chung, B. G., Park, J. W., Hu, J. S., Huang, C., Monuki, E. S. and Jeon, N. L. (2007) A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods. BMC Biotechnol. 7, 60.   DOI
7 Clarke, D. L., Johansson, C. B., Wilbertz, J., Veress, B., Nilsson, E., Karlstrom, H., Lendahl, U. and Frisen, J. (2000) Generalized potential of adult neural stem cells. Science 288, 1660-1663.   DOI
8 Dorsky, R. I., Moon, R. T. and Raible, D. W. (2000) Environmental signals and cell fate specification in premigratory neural crest. Bioessays 22, 708-716.   DOI
9 Farah, M. H., Olson, J. M., Sucic, H. B., Hume, R. I., Tapscott, S. J. and Turner, D. L. (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693-702.
10 Gage, F. H. (2000) Mammalian neural stem cells. Science 287, 1433-1438.   DOI
11 Germain, N., Banda, E. and Grabel, L. (2010) Embryonic stem cell neurogenesis and neural specification. J. Cell. Biochem. 111, 535-542.   DOI
12 Gurdon, J. B. and Bourillot, P. Y. (2001) Morphogen gradient interpretation. Nature 413, 797-803.   DOI
13 Hebert, J. M. and Fishell, G. (2008) The genetics of early telencephalon patterning: some assembly required. Nat. Rev. Neurosci. 9, 678-685.
14 Jessell, T. M. (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20-29.   DOI
15 Kim, H. J. (2011) Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons. Biochim. Biophys. Acta 1812, 1-11.   DOI
16 Kim, H. J. and Jin, C. Y. (2012) Stem cells in drug screening for neurodegenerative disease. Korean J. Physiol. Pharmacol. 16, 1-9.   DOI
17 Kim, H. J., McMillan, E., Han, F. and Svendsen, C. N. (2009) Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem Cells 27, 390-398.   DOI
18 Kim, H. J., Sugimori, M., Nakafuku, M. and Svendsen, C. N. (2007) Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1. Exp. Neurol. 203, 394-405.   DOI
19 Kong, S. Y., Park, M. H., Lee, M., Kim, J. O., Lee, H. R., Han, B. W., Svendsen, C. N., Sung, S. H. and Kim, H. J. (2015) Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells. PLoS ONE 10, e0118188.   DOI
20 Kong, S. Y., Kim, W., Lee, H. R. and Kim, H. J. (2017) The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells. FASEB J. 32, 1108-1119.
21 Lee, H. R., Farhanullah, Lee, J., Jajoo, R., Kong, S. Y., Shin, J. Y., Kim, J. O. and Kim, H. J. (2016) Discovery of a small molecule that enhances astrocytogenesis by activation of stat3, smad1/5/8, and erk1/2 via induction of cytokines in neural stem cells. ACS Chem. Neurosci. 7, 90-99.   DOI
22 Lee, S. K. and Pfaff, S. L. (2001) Transcriptional networks regulating neuronal identity in the developing spinal cord. Nat. Neurosci. 4, 1183-1191.   DOI
23 Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959-969.
24 Li Jeon, N., Baskaran, H., Dertinger, S. K., Whitesides, G. M., Van de Water, L. and Toner, M. (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20, 826-830.   DOI
25 Megason, S. G. and McMahon, A. P. (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129, 2087-2098.
26 Muller, F. J., Snyder, E. Y. and Loring, J. F. (2006) Gene therapy: can neural stem cells deliver? Nat. Rev. Neurosci. 7, 75-84.   DOI
27 Nishii, K., Brodin, E., Renshaw, T., Weesner, R., Moran, E., Soker, S. and Sparks, J. L. (2018) Shear stress upregulates regeneration-related immediate early genes in liver progenitors in 3D ECM-like microenvironments. J. Cell. Physiol. 233, 4272-4281.   DOI
28 Nakata, N., Kato, H. and Kogure, K. (1993) Protective effects of basic fibroblast growth factor against hippocampal neuronal damage following cerebral ischemia in the gerbil. Brain Res. 605, 354-356.   DOI
29 Nelson, A. D. and Svendsen, C. N. (2006) Low concentrations of extracellular FGF-2 are sufficient but not essential for neurogenesis from human neural progenitor cells. Mol. Cell. Neurosci. 33, 29-35.   DOI
30 Ng, J. M., Gitlin, I., Stroock, A. D. and Whitesides, G. M. (2002) Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23, 3461-3473.   DOI
31 Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F. and Gage, F. H. (1999) Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487-8497.   DOI
32 Panchision, D. M. and McKay, R. D. (2002) The control of neural stem cells by morphogenic signals. Curr. Opin. Genet. Dev. 12, 478-487.   DOI
33 Park, J. Y., Kim, S. K., Woo, D. H., Lee, E. J., Kim, J. H. and Lee, S. H. (2009) Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 27, 2646-2654.   DOI
34 Park, T. H. and Shuler, M. L. (2003) Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19, 243-253.   DOI
35 Ribes, V., Stutzmann, F., Bianchetti, L., Guillemot, F., Dolle, P. and Le Roux, I. (2008) Combinatorial signalling controls Neurogenin2 expression at the onset of spinal neurogenesis. Dev. Biol. 321, 470-481.   DOI
36 Parras, C. M., Galli, R., Britz, O., Soares, S., Galichet, C., Battiste, J., Johnson, J. E., Nakafuku, M., Vescovi, A. and Guillemot, F. (2004) Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495-4505.   DOI
37 Qian, X., Davis, A. A., Goderie, S. K. and Temple, S. (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81-93.   DOI
38 Rallu, M., Corbin, J. G. and Fishell, G. (2002) Parsing the prosencephalon. Nat. Rev. Neurosci. 3, 943-951.   DOI
39 Rogulja, D. and Irvine, K. D. (2005) Regulation of cell proliferation by a morphogen gradient. Cell 123, 449-461.   DOI
40 Sia, S. K. and Whitesides, G. M. (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563-3576.   DOI
41 Thoma, E. C., Wischmeyer, E., Offen, N., Maurus, K., Siren, A. L., Schartl, M. and Wagner, T. U. (2012) Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS ONE 7, e38651.   DOI
42 Xu, J., Liu, Z. and Ornitz, D. M. (2000) Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 127, 1833-1843.
43 Tropepe, V., Sibilia, M., Ciruna, B. G., Rossant, J., Wagner, E. F. and van der Kooy, D. (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166-188.   DOI
44 Walker, G. M., Zeringue, H. C. and Beebe, D. J. (2004) Microenvironment design considerations for cellular scale studies. Lab Chip 4, 91-97.   DOI
45 Wang, S. J., Saadi, W., Lin, F., Minh-Canh Nguyen, C. and Li Jeon, N. (2004) Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp. Cell Res. 300, 180-189.   DOI
46 Altmann, C. R. and Brivanlou, A. H. (2001) Neural patterning in the vertebrate embryo. Int. Rev. Cytol. 203, 447-482.
47 Abematsu, M., Smith, I. and Nakashima, K. (2006) Mechanisms of neural stem cell fate determination: extracellular cues and intracellular programs. Curr. Stem Cell Res. Ther. 1, 267-277.   DOI
48 Abhyankar, V. V. and Beebe, D. J. (2007) Spatiotemporal micropatterning of cells on arbitrary substrates. Anal. Chem. 79, 4066-4073.   DOI
49 Alenzi, F. Q. B. and Bahkali, A. H. (2011) Stem cells: biology and clinical potential. Afr. J. Biotechnol. 10, 19929-19940.
50 Bavister, B. D. (1995) Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91-148.   DOI