• 제목/요약/키워드: Group Homotopy

검색결과 69건 처리시간 0.108초

ON THE HOMOLOGY OF THE MODULI SPACE OF $G_2$ INSTANTONS

  • Park, Young-Gi
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.933-944
    • /
    • 1994
  • Let $\pi : P \to S^4$ be a principal G-bundle over $S^4$ whose the structure group G is a compact, connected, simple Lie group. Since $\pi_3(G) = \pi_4 (BG) = Z$, we can classify the principal bundle $P_k$ over $S^4$ by the map $S^4 \to BG$ of degree k. Atiyah and Jones [2] showed that $C_k = A_k/g^b_k$ is homotopy equivalent to $\Omega^3_k G \simeq \Omega^4_k BG$ where $A_k$ is the space of the all connections in $P_k$ and $g^b_k$ is the based gauge group which consists of all base point preserving automorphisms on $P_k$. Here $\Omega^nX$ is the space of all base-point preserving continuous map from $S^n$ to X. Let $M_k$ be the space of based gauge equivalence classes of all connections in $P_k$ satisfying the Yang-Mills self-duality equations, which we call the moduli space of G instantons.

  • PDF

DIGITAL COVERING THEORY AND ITS APPLICATIONS

  • Kim, In-Soo;Han, Sang-Eon
    • 호남수학학술지
    • /
    • 제30권4호
    • /
    • pp.589-602
    • /
    • 2008
  • As a survey-type article, the paper reviews various digital topological utilities from digital covering theory. Digital covering theory has strongly contributed to the calculation of the digital k-fundamental group of both a digital space(a set with k-adjacency or digital k-graph) and a digital product. Furthermore, it has been used in classifying digital spaces, establishing almost Van Kampen theory which is the digital version of van Kampen theorem in algebrate topology, developing the generalized universal covering property, and so forth. Finally, we remark on the digital k-surface structure of a Cartesian product of two simple closed $k_i$-curves in ${\mathbf{Z}}^n$, $i{\in}{1,2}$.

FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS

  • Oh, Yong-Geun
    • 대한수학회지
    • /
    • 제46권2호
    • /
    • pp.363-447
    • /
    • 2009
  • The author previously defined the spectral invariants, denoted by $\rho(H;\;a)$, of a Hamiltonian function H as the mini-max value of the action functional ${\cal{A}}_H$ over the Novikov Floer cycles in the Floer homology class dual to the quantum cohomology class a. The spectrality axiom of the invariant $\rho(H;\;a)$ states that the mini-max value is a critical value of the action functional ${\cal{A}}_H$. The main purpose of the present paper is to prove this axiom for nondegenerate Hamiltonian functions in irrational symplectic manifolds (M, $\omega$). We also prove that the spectral invariant function ${\rho}_a$ : $H\;{\mapsto}\;\rho(H;\;a)$ can be pushed down to a continuous function defined on the universal (${\acute{e}}tale$) covering space $\widetilde{HAM}$(M, $\omega$) of the group Ham((M, $\omega$) of Hamiltonian diffeomorphisms on general (M, $\omega$). For a certain generic homotopy, which we call a Cerf homotopy ${\cal{H}}\;=\;\{H^s\}_{0{\leq}s{\leq}1}$ of Hamiltonians, the function ${\rho}_a\;{\circ}\;{\cal{H}}$ : $s\;{\mapsto}\;{\rho}(H^s;\;a)$ is piecewise smooth away from a countable subset of [0, 1] for each non-zero quantum cohomology class a. The proof of this nondegenerate spectrality relies on several new ingredients in the chain level Floer theory, which have their own independent interest: a structure theorem on the Cerf bifurcation diagram of the critical values of the action functionals associated to a generic one-parameter family of Hamiltonian functions, a general structure theorem and the handle sliding lemma of Novikov Floer cycles over such a family and a family version of new transversality statements involving the Floer chain map, and many others. We call this chain level Floer theory as a whole the Floer mini-max theory.

MINIMAL DIGITAL PSEUDOTORUS WITH κ-ADJACENCY, κ ∊ {6, 18, 26}

  • HAN, SANG-EON
    • 호남수학학술지
    • /
    • 제26권2호
    • /
    • pp.237-246
    • /
    • 2004
  • In this paper, three kinds of minimal digital pseudotori $DT_6$, $DT^{\prime}_{18}$, $DT^{{\prime}{\prime}}_{26}$, which are derived from the minimal simple 4- and 8-curves, $MSC_4$ and $MSC^{\prime}_8$, are shown and are proved not to be digitally ${\kappa}$-homotopy equivalent to each other, where ${\kappa}{\in}\{6,\;18,\;26\}$. Furthermore, the digital topological properties of the minimal digital ${\kappa}$-pseudotori are investigated in the digital homotopical point of view, where ${\kappa}{\in}\{6,\;18,\;26\}$.

  • PDF

On the performance of heat absorption/generation and thermal stratification in mixed convective flow of an Oldroyd-B fluid

  • Hayat, Tasawar;Khan, Muhammad Ijaz;Waqas, Muhammad;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1645-1653
    • /
    • 2017
  • This investigation explores the thermally stratified stretchable flow of an Oldroyd-B material bounded by a linear stretched surface. Heat transfer characteristics are addressed through thermal stratification and heat generation/absorption. Formulation is arranged for mixed convection. Application of suitable transformations provides ordinary differential systems through partial differential systems. The homotopy concept is adopted for the solution of nonlinear differential systems. The influence of several arising variables on velocity and temperature is addressed. Besides this, the rate of heat transfer is calculated and presented in tabular form. It is noticed that velocity and Nusselt number increase when the thermal buoyancy parameter is enhanced. Moreover, temperature is found to decrease for larger values of Prandtl number and heat absorption parameter. Comparative analysis for limiting study is performed and excellent agreement is found.

디지털건축공간에 나타난 위상기하학적 불변항의 표현특성에 관한 연구 (A Study on the Characteristics of Topological Invariant Expression in the Space of Digital Architecture)

  • 배강원;박찬일
    • 한국실내디자인학회논문집
    • /
    • 제14권3호
    • /
    • pp.64-72
    • /
    • 2005
  • The purpose of this study is to propose a topological design principles and to analyze the space of digital architecture applying topological invariant expressive characteristics. As this study is based on topology as a science of true world's pattern, we intented to explain the concepts and provide some methods of low-level and hyperspace topological invariant Properties. Four major aspects are discussed. Those are connection theory, boundary concept, homotopy group, knot Pattern theory as topological invariant properties. Then we intented to make understand topological characteristics of the Algorithms, luring machine, cellular automata, string theory, membrane, DNA and supramolecular chemistry. In fine, the topological invariant properties of the digital architecture as genetic algorithms based on self-organization and heterogeneous networks of interacting actors can be analyzed and used as a critical tool. Therefore topology can be provided endless possibilities for architecture, designers and scientists intended in expressing the more complex and organic patterns of nature as life.

COCYCLIC MORPHISM SETS DEPENDING ON A MORPHISM IN THE CATEGORY OF PAIRS

  • Kim, Jiyean;Lee, Kee Young
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1589-1600
    • /
    • 2019
  • In this paper, we apply the notion of cocyclic maps to the category of pairs proposed by Hilton and obtain more general concepts. We discuss the concept of cocyclic morphisms with respect to a morphism and find that it is a dual concept of cyclic morphisms with respect to a morphism and a generalization of the notion of cocyclic morphisms with respect to a map. Moreover, we investigate its basic properties including the preservation of cocyclic properties by morphisms and find conditions for which the set of all homotopy classes of cocyclic morphisms with respect to a morphism will have a group structure.

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT

  • Han, Sang-Eon
    • 호남수학학술지
    • /
    • 제37권1호
    • /
    • pp.135-147
    • /
    • 2015
  • Owing to the notion of a normal adjacency for a digital product in [8], the study of product properties of digital topological properties has been substantially done. To explain a normal adjacency of a digital product more efficiently, the recent paper [22] proposed an S-compatible adjacency of a digital product. Using an S-compatible adjacency of a digital product, we also study product properties of digital topological properties, which improves the presentations of a normal adjacency of a digital product in [8]. Besides, the paper [16] studied the product property of two digital covering maps in terms of the $L_S$- and the $L_C$-property of a digital product which plays an important role in studying digital covering and digital homotopy theory. Further, by using HS- and HC-properties of digital products, the paper [18] studied multiplicative properties of a digital fundamental group. The present paper compares among several kinds of adjacency relations for digital products and proposes their own merits and further, deals with the problem: consider a Cartesian product of two simple closed $k_i$-curves with $l_i$ elements in $Z^{n_i}$, $i{\in}\{1,2\}$ denoted by $SC^{n_1,l_1}_{k_1}{\times}SC^{n_2,l_2}_{k_2}$. Since a normal adjacency for this product and the $L_C$-property are different from each other, the present paper address the problem: for the digital product does it have both a normal k-adjacency of $Z^{n_1+n_2}$ and another adjacency satisfying the $L_C$-property? This research plays an important role in studying product properties of digital topological properties.