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COCYCLIC MORPHISM SETS DEPENDING ON A

MORPHISM IN THE CATEGORY OF PAIRS

Jiyean Kim and Kee Young Lee

Abstract. In this paper, we apply the notion of cocyclic maps to the

category of pairs proposed by Hilton and obtain more general concepts.
We discuss the concept of cocyclic morphisms with respect to a morphism

and find that it is a dual concept of cyclic morphisms with respect to a
morphism and a generalization of the notion of cocyclic morphisms with

respect to a map. Moreover, we investigate its basic properties including

the preservation of cocyclic properties by morphisms and find conditions
for which the set of all homotopy classes of cocyclic morphisms with

respect to a morphism will have a group structure.

1. Introduction

Given a topological space X, Gottlieb [1,2] introduced and studied the eval-
uation subgroups Gn(X) of the homotopy groups πn(X) using the concept of
cyclic homotopies. The author investigated the relationship between the eval-
uation subgroups and Euler characteristic, universal bundle, and cohomology
groups, etc. Varadarajan [9] extended the concept of cyclic homotopies to that
of cyclic maps and introduced the concept of cocyclic maps as a dual concept.
Furthermore, the author called the sets of cyclic and cocyclic maps Gottlieb
and dual Gottlieb sets, respectively, and studied their properties based on the
Whitehead product, Puppe sequence, and Eckmann–Hilton duality [3]. Woo
and Kim [10] introduced the generalized Gottlieb groups Gn(X,A) for a topo-
logical pair (X,A), while Woo and Lee [11] introduced the relative Gottlieb
groups GReln (X,A) for a topological pair (X,A) and G-sequence. It is well-
known that G-sequences are not always exact except under certain conditions
[6,8,12]. Furthermore, Lee and Woo [5,6] also introduced the concepts of cyclic
morphism, cocyclic morphism, and dual G-sequence in the category of pairs.
As in the case of G-sequences, the dual G-sequences are not always exact ex-
cept under certain conditions. In [4], Lee and Kim introduced a more general
concept of cyclic morphisms with respect to a map and studied their properties.
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The category of pairs proposed by Hilton [3] is a category in which the
objects are maps (A, ∗)→ (B, ∗) and a map from α : A1 → A2 to β : B1 → B2

is a pair of maps (f1, f2) such that the diagram

A1

f1

��

α // A2

f2

��
B1

β // B2

is commutative, that is, βf1 = f2α. We shall call the maps in this category
morphisms to distinguish them from the maps between spaces. Two morphisms
(f1, f2), (g1, g2) : α → β are said to be homotopic if there exists a morphism
(H1, H2) : α× 1I → β such that H1 and H2 are homotopies between f1 and g1

and between f2 and g2, respectively, where 1I is the identity map on the unit
interval.

The set Π(α, β) is the set of all homotopy classes of morphisms from α to
β in the category of pairs. In particular, Πn(α, β) = Π(Σnα, β) is a group if
n ≥ 1 and abelian if n ≥ 2, where Σnα : ΣnA1 → ΣnA2 is the n-fold suspension
map. Moreover, if α = in : Σn−1A → CΣn−1A is the natural inclusion, then
Π(α, β) is denoted by Πn(A, β). Also, if β is an inclusion and A = S0, then
we obtain ordinary relative homotopy groups. Furthermore, if β : ∗ → B,
Πn(A, β) = Πn(A,B) and if β : B → ∗, then Πn(A, β) = Πn−1(A,B).

In this paper, we extend the concept of cocyclic morphisms to that of co-
cyclic morphisms with respect to a morphism in the category of pairs and
investigate its homotopy properties. Furthermore, we discuss the set of all ho-
motopy classes of cocyclic morphisms with respect to a morphism referred to
as the cocyclic morphism set depending on a morphism. The set of cocyclic
morphisms from α to β depending the morphism (h1, h2) from α to itself is
denoted by DG(h1,h2)(α, β) (Definition 3.3). We investigate whether a cocyclic
morphism set depending on a morphism is homotopy invariant or has a group
structure. The proof of our main results (Corollary 3.6 and Theorem 3.8) has
been presented in Section 3.

Corollary 3.6. DG(h1,h2)(α, β) is two-sided homotopy invariant.

Theorem 3.8. Let α : A1 → A2 be an object and β : B1 → B2 be an H-
group object. If (h1, h2) : α → α is a homotopy equivalent morphism, then
DG(h1,h2)(α, β) is a subgroup of Π(α, β).

Throughout this paper, all spaces are pointed, connected and have the ho-
motopy type of a CW-complex. Moreover, all maps and homotopies preserve
the base points, and we use the same notation for a map f : X → Y and its
homotopy class in [X,Y ].

2. Definitions and notations

In this section, we explain several concepts mentioned in Section 1.
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A map f : A→ X is said to be cyclic [9] if there exists a map H : A×X → X
such that the diagram

A×X H // X

A ∨X

j

OO

f∨1 // X ∨X

∇

OO

is commutative, where j is the inclusion map and ∇ is the folding map.
We denote the set of all homotopy classes of cyclic maps from A to X

by G(A,X) (see [9]), that is, G(A,X) = {[f ] ∈ Π(A,X) | f is a cyclic map},
equivalently, G(A,X) = ω∗(Π(A,XX)), where ω : XX → X is the eval-
uation map. In particular, G(ΣnA,X) is denoted by Gn(A,X). Clearly,
ω∗(Πn(A,XX)) = Gn(A,X). The subgroup Gn(A,X) is a generalization of
G(A,X) and the Gottlieb group Gn(X). In fact, G0(A,X) = G(A,X) and
Gn(S0, X) = Gn(X).

A map f : X → A is said to be cocyclic [7] if there exists a map φ : X →
X ∨A such that the following diagram is homotopy commutative:

X ×X
1×f // X ×A

X

4

OO

φ // X ∨A,

j

OO

where j is the inclusion map and 4 is the folding map.
Such a map φ is called a coassociated map of f . The set of all homotopy

classes of cocyclic maps from X to A is denoted by DG(X,A) (see [7]), that
is, DG(X,A) = {[f ] ∈ Π(X,A) | f is a cocyclic map}.

Let α : A1 → A2, β : B1 → B2, and γ : X → Y be the objects and let
(h1, h2) : γ → β be a morphism in the category of pairs. A map (f1, f2) : α→ β
is called a cyclic morphism with respect to (h1, h2) [4] if there exists a map
(H1, H2) : α×γ → β such that (H1, H2)|α = (f1, f2) and (H1, H2)|γ = (h1, h2).

In this case, (H1, H2) is called an affiliated morphism of (f1, f2) with respect
to (h1, h2). Moreover, if (h1, h2) : β → β is the identity morphism, then (f1, f2)
is called a cyclic morphism.

The subset G(h1,h2)(α, β) of Π(α, β) is defined as the set of homotopy classes
of cyclic morphisms with respect to (h1, h2) : γ → β (see [4]). That is,

G(h1,h2)(α, β)={[f1, f2] ∈ Π(α, β)|(f1, f2) is a cyclic morphism w.r.t (h1, h2)}.

3. Cocyclic morphism with respect to a morphism

In this section, we introduce and discuss the concept of cocyclic morphisms
with respect to a morphism in the category of a pair, which is a dual concept of
cyclic morphisms with respect to a morphism as discussed in [4]. We begin by
introducing the definition of a cocyclic morphism with respect to a morphism.
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Let α : A1 → A2 and β : B1 → B2 be objects in the category of pairs and
let (h1, h2) : α→ α be a morphism.

Definition 3.1. A morphism (f1, f2) : α → β is said to be cocyclic with
respect to (h1, h2) if there exists a morphism (µ1, µ2) : α → α ∨ β such that
(j1, j2) ◦ (µ1, µ2) : α→ α× α is homotopic to ((h1 × f1) ◦∆1, (h2 × f2) ◦∆2),
where (∆1,∆2) is the diagonal morphism and (j1, j2) : α ∨ β → α × β is the
inclusion morphism.

A1 ×A1

α×α

��

h1×f1 // A1 ×B1

α×β

��

A1

α

��

∆1

dd

µ1 // A1 ∨B1

j1

88

α∨β
��

A2

∆2

zz

µ2 // A2 ∨B2

j2

&&
A2 ×A2

h2×f2 // A2 ×B2

In this case, (µ1, µ2) is called a coaffiliated morphism of (f1, f2) with respect
to (h1, h2). If (h1, h2) = (idA1

, idA2
), then a cocyclic morphism (f1, f2) with

respect to (h1, h2) is called a cocyclic morphism.

Lemma 3.1. If (f1, f2) : α → β is a cocyclic morphism, then (f1, f2) is a
cocyclic morphism with respect to any morphism (h1, h2) : α→ α.

Proof. Let (µ1, µ2) be a coaffiliated morphism of (f1, f2). Then, ((h1 ∨ idB1
) ◦

µ1, (h2∨idB2
)◦µ2) is a coaffiliated morphism of (f1, f2) with respect to (h1, h2).

In fact,

(j1, j2) ◦ ((h1 ∨ idB1
) ◦ µ1, (h2 ∨ idB2

) ◦ µ2)

= (j1 ◦ (h1 ∨ idB1
) ◦ µ1, j2 ◦ (h2 ∨ idB2

) ◦ µ2)

= ((h1 × idB1
) ◦ j1 ◦ µ1, (h2 × idB2

) ◦ j2 ◦ µ2

' ((h1 × idB1)(idA1 × f1) ◦∆1, (h2 × idB2)(idA2 × f2) ◦∆2)

= (h1 × f1, h2 × f2) ◦ (∆1,∆2). �

Remark. Suppose that (c1, c2) : α → α is the constant morphism, that is,
ci : Ai → Ai is given by ci(a) = ∗ for i = 1, 2, and µi : Ai → Ai ∨Bi is defined
by µi(x) = (∗, fi(x)) for i = 1, 2. Then, (µ1, µ2) : α → α ∨ β is a coaffiliated
morphism of (f1, f2) : α → β with respect to (c1, c2). This implies that every
morphism (f1, f2) : α → β is cocyclic with respect to the constant morphism
(c1, c2).
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Definition 3.2. A map α : A1 → A2 is said to be a co-H-object with respect
to a morphism (h1, h2) : α→ α if there exists a morphism (µ1, µ2) : α→ α∨α
such that (j1, j2) ◦ (µ1, µ2) : α→ α×α is homotopic to ((h1, idA1), (h2, idA2)).

If (h1, h2) is the identity morphism (idA1
, idA2

), then a co-H-object with
respect to (h1, h2) is a co-H-object.

Example 1. Every object α : A1 → A2 is a co-H-object with respect to the
constant morphism (c1, c2) : α → α. Let µi : Ai → Ai ∨ Ai be the inclusion
µi(a) = (∗, a) for i = 1, 2. Then, ji ◦ µi(a) = ji(∗, a) = (∗, a) = (ci, idAi

)(a) for
i = 1, 2.

Example 2. If α is a co-H-object, then it is a co-H-object with respect to
any morphism (h1, h2) : α → α. Let α be a co-H-object and (h1, h2) : α → α
be a morphism. Then, there exists a morphism (µ1, µ2) : α→ α ∨ α such that
(j1, j2)◦ (µ1, µ2) : α→ α×α is homotopic to (∆1,∆2), where (j1, j2) : α∨α→
α × α is the inclusion and (∆1,∆2) : α → α × α is the diagonal morphism.
Define µi = (hi ∨ idA1

) ◦ µi for i = 1, 2. Then, (j1, j2) ◦ (µ1, µ2) : α→ α× α is
homotopic to ((h1, idA1

), (h2, idA2
)).

Example 3. Let (A1, µ1) and (A2, µ2) be co-H-spaces and α : A1 → A2 be a
map. If (µ1, µ2) : α→ α∨α is a morphism, then α is a co-H-object. Hence, α
is a co-H-object with respect to any morphism (h1, h2) : α→ α.

Suppose α is a co-H-object with respect to a morphism (h1, h2) : α → α.
Then every morphism (f1, f2) : α → β is cocyclic with respect to (h1, h2).
Moreover, if (µ1, µ2) : α → α ∨ α is a co-H-structure with respect to (h1, h2),
then ((1 ∨ f1) ◦ µ1, (1 ∨ f2) ◦ µ2) is a coaffiliated morphism of (f1, f2).

Lemma 3.2. For a given morphism (h1, h2) : α → α, if (f1, f2) : α → β is a
cocyclic morphism with respect to (h1, h2) and (θ1, θ2) : β → γ is an arbitrary
morphism, then (θ1, θ2) ◦ (f1, f2) : α → γ is a cocyclic morphism with respect
to (h1, h2).

Proof. Let α : A1 → A2, β : B1 → B2, and γ : C1 → C2 be objects. Since
(f1, f2) : α → β is a cocyclic morphism with respect to (h1, h2), then there
exists a coaffiliated morphism (µ1, µ2) : α → α ∨ β with respect to (h1, h2).
Consequently, (1∨ θ1, 1∨ θ2) ◦ (µ1, µ2) : α→ α∨ γ is an affiliated morphism of
(θ1, θ2) ◦ (f1, f2). In fact,

(j1, j2) ◦ (1 ∨ θ1, 1 ∨ θ2) ◦ (µ1, µ2) = (1× θ1, 1× θ2) ◦ (j1, j2) ◦ (µ1, µ2)

' (1× θ1, 1× θ2)(h1 × f1, h2 × f2)

= (h1 × θ1f1, h2 × θ2f2),
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and we have the following homotopy commutative diagram:

A1 ×A1

α×α

��

h1×f1 // A1 ×B1
1×θ1 // A1 × C1

A1

α

��

∆1

dd

µ1 // A1 ∨B1

j1

OO

α∨β
��

1∨θ1 // A1 ∨ C1

j1

OO

α∨γ
��

A2

∆2

zz

µ2

// A2 ∨B2

j2

��

1∨θ2
// A2 ∨ C2

j2

��
A2 ×A2

h2×f2
// A2 ×B2

1×θ2
// A2 × C2

�

From the definition of a cocyclic morphism with respect to a morphism,
we can say that if (f1, f2) is homotopic to (g1, g2) and (f1, f2) is a cocyclic
morphism with respect to (h1, h2), then (g1, g2) is a cocyclic morphism with
respect to (h1, h2).

Definition 3.3. The subset DG(h1,h2)(α, β) of Π(α, β) is defined as the set of
all elements of Π(α, β), which is a cocyclic morphism with respect to (h1, h2).
That is,

DG(h1,h2)(α, β)

= {[f1, f2] ∈ Π(α, β)|(f1, f2) is a cocyclic morphism w.r.t. (h1, h2)}.

DG(h1,h2)(α, β) is called the cocyclic morphism set from α to β depending on
the morphism (h1, h2).

From Lemma 3.1 and the remark above, we have that

DG(α, β) = DG(idA1
,idA2

)(α, β) ⊆ DG(h1,h2)(α, β)

⊆ DG(c1,c2)(α, β) = Π(α, β).

The following result gives a characterization of a co-H-object with respect
to a morphism in terms of the cocyclicity of a morphism with respect to the
morphism.

Proposition 3.3. Let α : A1 → A2 be an object and (h1, h2) : α → α be a
morphism. Then, the following are equivalent:

(a) α is a co-H-object with respect to (h1, h2);
(b) 1α = (idA1

, idA2
) : α→ α is a cocyclic morphism with respect to (h1, h2);

(c) DG(h1,h2)(α, β) = Π(α, β).

Proof. (a) ⇔ (b). This follows immediately from the definitions of the co-
H-object with respect to (h1, h2) and the cocyclic morphism with respect to
(h1, h2).
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(b) ⇒ (c). Let [f1, f2] ∈ Π(α, β). As (f1, f2) = (f1, f2) ◦ (idA1
, idA2

),
(f1, f2) is a cocyclic morphism with respect to (h1, h2) by Lemma 3.2. Thus,
[f1, f2] ∈ DG(h1,h2)(α, β).

(c) ⇒ (b). By the hypothesis, (idA1 , idA2) ∈ Π(α, α) = DG(h1,h2(α, α).
Thus, (idA1

, idA2
) is a cocyclic morphism with respect to (h1, h2). �

It has been observed that if (θ1, θ2) : β → γ is a homotopy equivalence, then
(θ1, θ2)∗ : Π(α, β)→ Π(α, γ) is a one-to-one correspondence.

Let α : A1 → A2, β : B1 → B2 and γ : C1 → C2 be objects and let
(h1, h2) : α→ α be a morphism. Then, we have the following lemma.

Lemma 3.4. If (θ1, θ2) : β → γ is a homotopy equivalence, then (θ1, θ2)∗ maps
DG(h1,h2)(α, β) onto DG(h1,h2)(α, γ).

Proof. The proof follows immediately from Lemma 3.2. In fact, if (θ−1
1 , θ−1

2 ) is
the homotopy inverse of (θ1, θ2), then

(θ−1
1 , θ−1

2 )∗(DG
(h1,h2)(α, γ)) ⊆ DG(h1,h2)(α, β). �

Note that if (g1, g2) : η → α is a homotopy equivalence, then (g1, g2)∗ :
Π(α, β)→ Π(η, β) is a one-to-one correspondence.

Lemma 3.5. Let (g1, g2) : η → α be a homotopy equivalence. Then (g1, g2)∗

maps DG(h1,h2)(α, β) onto DG(g−1
1 h1g1,g

−1
2 h2g2)(η, β). Moreover, (g−1

1 , g−1
2 )∗

maps DG(g−1
1 h1g1,g

−1
2 h2g2)(η, β) onto DG(h1,h2)(α, β).

Proof. Let [f1, f2] ∈ DG(h1,h2)(α, β). Then, there exists a coaffiliated map
(µ,µ2) : α→ α ∨ β. That is, jiµi ' (hi × fi)∆i, where ji : Ai ∨ Bi → Ai × Bi
is the inclusion and ∆i : Ai → Ai ×Ai is the diagonal map for i = 1, 2. Define
µi = (g−1

i ∨ idBi
)µigi for i = 1, 2, where (g−1

1 , g−1
2 ) is the inverse morphism

of (g1, g2). Then, (µ1, µ2) is a coaffiliated map (f1g1, f2g2) with respect to
(g−1

1 h1g1, g
−1
2 h2g2).

C1 × C1
g1×g1 // A1 ×A1

h1×f1 // A1 ×B1

g−1
1 ×idB1// C1 ×B1

C1

∆1

OO

η

��

g1 // A1

∆1

OO

α

��

µ1 // A1 ∨B1

α∨β
��

j1

OO

g−1
1 ∨idB1// C1 ∨B1

η∨β
��

j

OO

C2 g2
//

∆2

��

A2 µ2

//

∆2

��

A2 ∨B2

j2

��

g−1
2 ∨idB2

// C2 ∨B2

j2

��
C2 × C2 g2×g2

// A2 ×A2
h2×f2

// A2 ×B2
g−1
2 ×idB2

// C2 ×B2
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Therefore, (g1, g2)∗[f1, f2] = [f1g1, f2g2] ∈ DG(g−1
1 h1g1,g

−1
2 h2g2)(η, β). Similarly,

if [k1, k2] ∈ DG((g−1
1 )h1g1,g

−1
2 h2g2)(η, β), then

(g−1
1 , g−1

2 )∗[k1, k2] = [k1g
−1
1 , k2g

−1
2 ]

∈ DG((g−1
1 )−1g−1

1 h1g1g
−1
1 ,(g−1

2 )−1g−1
2 h2g2g

−1
2 )(α, β) = DG(h1,h2)(α, β).

It follows that (g1, g2)∗ maps DG(h1,h2)(α, β) onto DG(g−1
1 h1g1,g

−1
2 h2g2)(η, β).

Similarly, (g−1
1 , g−1

2 )∗ maps DG(g−1
1 h1g1,g

−1
2 h2g2)(η, β) onto DG(h1,h2)(α, β).

This completes the proof of the lemma. �

From Lemmas 3.4 and 3.5, we have the following corollary.

Corollary 3.6. DG(h1,h2)(α, β) is two-sided homotopy invariant.

Definition 3.4 (Lee and Woo [6]). We say that α : A1 → A2 is an H-object
if there exists a morphism (m1,m2) : α× α→ α such that (m1,m2) ◦ (j1, j2) :
α ∨ α → α is homotopic to (∇1,∇2), where (j1, j2) : α ∨ α → α × α is the
inclusion map and ∇i : Ai ∨Ai → Ai is the folding map for i = 1, 2.

Here, we recall a well-known fact.

Fact. For any space X, let eX : X → ΩΣX be the usual map given by
eX(x)(s) = 〈x, s〉. If α : X → Y is an object, then (eX , eY ) : α → ΩΣα is a
morphism. In fact,

eY (α(x))(s) = 〈α(x), s〉 = Σα〈x, s〉 = Σα(eX(x)(s)) = (ΩΣα ◦ eX(x))(s).

In particular, if X is an H-space, then there exists a map sX : ΩΣX → X such
that sX ◦ eX ' 1X . Moreover, (sX , sY ) : ΩΣα → α is a morphism if α is an
H-object.

Lemma 3.7. Let α : A1 → A2 be an object, β : B1 → B2 be an H-object, and
(h1, h2) : α→ α be a morphism. Then, (f1, f2) : α→ β is a cocyclic morphism
with respect to (h1, h2) if and only if (eB1

, eB2
)◦ (f1, f2) is a cocyclic morphism

with respect to (h1, h2).

Proof. The “only if” part follows from Lemma 3.2.
Let (eB1

, eB2
)◦ (f1, f2) be a cocyclic morphism with respect to (h1, h2) with

respect to (h1, h2) and (sB1
, sB2

) be the morphism mentioned above. From
Lemma 3.2, (sB1

, sB2
)◦ (eB1

, eB2
)◦ (f1, f2) is a cocyclic morphism with respect

to (h1, h2). Since (sB1
, sB2

) ◦ (eB1
, eB2

) ◦ (f1, f2) ' (f1, f2), (f1, f2) is cocyclic
with respect to (h1, h2). �

Now, we discuss the group structure of DG(h1,h2)(α, β). Let α : A1 → A2

and β : B1 → B2 be objects. Then, the set Π(α, β) has a group structure if β
is an H-group object. Let (m1,m2) be an H-structure with inverse structure
(ν1, ν2). If [f1, f2], [g1, g2] ∈ Π(α, β), then [f1, f2]+[g1, g2] is defined by [m1(f1×
g1)∆1,m2(f2 × g2)∆2], where (∆1,∆2) : α→ α× α is the diagonal morphism.
Moreover, [f1, f2]−1 is given by [ν1f1, ν2f2]. In [6], it was shown that DG(α, β)
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is a subgroup of Π(α, β) if β is an H-group object. Therefore, if β is an H-
group object, then DG(h1,h2)(α, β) is a subgroup of Π(α, β) provided (h1, h2) =
(1A1

, 1A2
) or (h1, h2) = (c1, c2), where (1A1

, 1A2
) : α → α is the identity

morphism and (c1, c2) : α → α is the constant morphism. This follows from
the fact that DG(1A1

,1A2
)(α, β) = DG(α, β) and DG(c1,c2)(α, β) = Π(α, β).

These facts naturally raise the following questions. If β is an H-group object,
doesDG(h1,h2)(α, β) have a group structure for any morphism (h1, h2) : α→ α?
If not, is there any morphism (h1, h2) different from the identity and con-
stant morphisms mentioned above, such that DG(h1,h2)(α, β) is a subgroup of
Π(α, β)? Theorem 3.8 below provides an affirmative answer to the last ques-
tion.

Theorem 3.8. Let α : A1 → A2 be an object and β : B1 → B2 be an H-
group object. If (h1, h2) : α → α is a homotopy equivalent morphism, then
DG(h1,h2)(α, β) is a subgroup of Π(α, β).

Proof. Let (m1,m2) be the H-structure and (ν1, ν2) be the inverse structure
on β. Then, the inverse of [f1, f2] in the group Π(α, β) is the homotopy class
of [ν1f1, ν2f2]. According to Lemma 3.2, (ν1f1, ν2f2) = (ν1, ν2) ◦ (f1, f2) is a
cocyclic morphism with respect to (h1, h2) if (f1, f2) is cocyclic with respect to
(h1, h2). Thus, DG(h1,h2)(α, β) is closed under the inverse structure.

Next, we show that DG(h1,h2)(α, β) is closed under the additive operation.
Let [f1, f2], [g1, g2] ∈ DG(h1,h2)(α, β). Then, we have two affiliated morphisms
(φ1, φ2) : α → α ∨ β and (ψ1, ψ2) : α → α ∨ β such that jφ1 ' (h1 × f1)∆,
jφ2 ' (h1 × f2)∆, jψ1 ' (h1 × g1)∆ and jψ2 ' (h2 × g2)∆. Let ik : (Ak ∨
Bk) ∨ Bk → Ak ∨ (Bk × Bk) be the inclusion for k = 1, 2. Define λ1 = (1A1

∨
m1)i1(φ1h

−1
1 ∨1B1

)ψ1 and λ2 = (1A2
∨m2)i2(φ2h

−1
2 ∨1B2

)ψ2, where (h−1
1 , h−1

2 )
is the inverse morphism of (h1, h2). Then, we have jλ1 ' (h1× (f1 +g1))∆ and
jλ2 ' (h2 × (f2 + g2))∆. This conclusion follows from the following diagram:

(Ak ∨Bk) ∨Bk
ik //

j∨1

��

Ak ∨ (Bk ×Bk)

j

��

1∨mk // Ak ∨Bk

j

��
Ak ∨Bk

φkh
−1
k ∨1Bk

77

(hk×fk)∆h−1
k ∨1Bk//

j

��

(Ak ×Bk) ∨Bk

j

��

i // Ak × (Bk ×Bk)
1×mk // Ak ×Bk

Ak

ψk

;;

(hk×gk)∆
// Ak ×Bk

(hk×fk)∆h−1
k ×1Bk

// (Ak ×Bk)×Bk
1×mk

33

for k = 1, 2, where the two triangular diagrams on the left are commutative up
to homotopy and the other diagrams are commutative. Furthermore, since

(j ∨ 1Bk
) ◦ (φkh

−1
k ∨ 1Bk

) = jφkh
−1
k ∨ 1Bk

' (hk × fk)∆h−1
k ∨ 1Bk

,

we have jλk ' (1Ak
× mk) ◦ ((hk × fk)∆h−1

k × 1Bk
= (1Ak

× mk) ◦ ((hk ×
fk)∆h−1

k hk × gk)∆ = (1Ak
×mk)(hk × fk)∆× gk)∆ = (hk ×mk(fk × gk))∆ =

(hk × (fk + gk))∆ for i = 1, 2.
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Hence, to show that (λ1, λ2) is an affiliated map of [f1 + g1, f2 + g2] with
respect to (h1, h2), it is sufficient to show that (λ1, λ2) is a morphism from α
to α ∨ β. In fact,

λ2 ◦ α = [(1A2 ∨m2)i2(φ2h
−1
2 ∨ 1B2)ψ2] ◦ α

= (1A2 ∨m2)i2(φ2h
−1
2 ∨ 1B2)(α ∨ β)ψ1

= (1A2
∨m2)i2(φ2h

−1
2 α ∨ β)ψ1

= (1A2
∨m2)i2((α ∨ β)φ1h

−1
1 ∨ β)ψ1

= (1A2
∨m2)i2((α ∨ β) ∨ β) ◦ (φ1h

−1
1 ∨ 1B1

)ψ1

= (1A2
∨m2)(α ∨ (β × β)) ◦ i1(φ1h

−1
1 ∨ 1B1

)ψ1

= (α ∨m2(β × β))i1(φ1h
−1
1 ∨ 1B1)ψ1

= (α ∨ βm1)i1(φ1h
−1
1 ∨ 1B1)ψ1

= (α ∨ β)(1A1
∨m1)i1(φ1h

−1
1 ∨ 1B1

)ψ1

= (α ∨ β)λ1.

Thus, [f1+g1, f2+g2] ∈ DG(h1,h2)(α, β), so that DG(h1,h2)(α, β) is closed under
the operation of addition. Hence, DG(h1,h2)(α, β) is a subgroup of Π(α, β).
This completes the proof. �

Definition 3.5. A morphism (h1, h2) : α→ α is called a structural morphism
if DG(h1,h2)(α, β) is a subgroup, where β : B1 → B2 is an H-object.

Example 4. Let α : A1 → A2 be an object and β : B1 → B2 be an H-
object. Then, the identity morphism (1A1 , 1A2) and the constant morphism
(cA1, cA2) are structural morphisms. Furthermore, by Theorem 3.8, a homotopy
equivalent morphism (h1, h2) : α→ α is a structural morphism.

Let EX and ΩX be the path and loop space of a space X, respectively.
Then, the map p : EΩX → ΩX given by p(α) = α(0) is an H-group. Let
h : ΩEX → EΩX be a homeomorphism given by h(α)(s)(t) = α(t)(s). Define
µ : EΩX×EΩX → EΩX by hµ′(h−1×h−1), where µ′ is the H-group structure
of ΩEX. Then, µ is an H-group structure of EΩX. In fact, the following
diagram is commutative:

EΩX ∨ EΩX

∆

""

j ((

h−1∨h−1
// ΩEX ∨ ΩEX

jvv

∆

||

EΩX × EΩX

µ

��

h−1×h−1// ΩEX × ΩEX

µ′

��
EΩX

h−1

// ΩEX
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Moreover, the inverse structure of EΩX is given by hνh−1, where ν is the
inverse structure of ΩEX. Thus, to show that p is an H-structure object, it is
sufficient to show that the following diagram is commutative:

EΩX × EΩX
µ1 //

p×p
��

EΩX

p

��
ΩX × ΩX

µ2

// ΩX

where µ1 and µ2 are the H-group structures of EΩX and ΩX, respectively.
From the definition of µ1 and µ2, it is easy to show that p ◦ µ1 = µ2 ◦ (p× p).
Moreover, pν1(α)(t) = νp(α)(t), where ν : ΩX → ΩX is the inverse structure.

Corollary 3.9. Let α : A1 → A2 be an object and p : EΩX → ΩX be the
H-structure. Then, DG(h1,h2)(α, p) is a subgroup of Π(α, p) if (h1, h2) : α→ α
is a structural morphism.

In general, the map pn : EΩn−1X → Ωn−1X is an H-group object. Thus,
DG(h1,h2)(α, pn) is a subgroup of Π(α, pn) = Πn(α,X) for a structural mor-

phism (h1, h2) : α→ α. Denote DG(h1,h2)(α, pn) by DG
(h1,h2)
n (α,X) for n > 1.

Theorem 3.10. Let (f1, f2) : α → β be a morphism. Then f1 is a cocyclic
map with respect to h1 with φ1 as an affiliated map and f2 is a cocyclic map
with respect to h2 with φ2 as an affiliated map. If α is a cofibration and φ2α
is homotopic to (α ∨ β)φ1, then there exists a coaffiliated map φ′ with respect
to h2 such that (φ1, φ

′
2) is a morphism from α to α ∨ β such that (f1, f2) is a

cocyclic morphism with respect to (h1, h2).

Proof. Let α : A1 → A2 and β : B1 → B2 be objects. According to the
hypothesis, the following diagram commutes up to homotopy:

A1 ×A1
h1×f1 // A1 ×B1

A1

α

��

∆

OO

φ1 // A1 ∨B1

j

OO

α∨β
��

A2
φ2

//

∆

��

A2 ∨B2

j

��
A2 ×A2

h2×f2
// A2 ×B2

Since φ2α ' (α ∨ β)φ1, there exists a homotopy H : A1 × I → A2 ∨ B2 such
that H|A1×1 = (α ∨ β)φ1. Since α is a cofibration, there exists a homotopy
H ′ : A2× I → A2∨B2 such that H ′(α×1I) = H. Define φ′2 = H ′|A2×1. Then,
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we have

φ′2α = H ′|A2×1α = H ′(α× 1)|A1×1 = H|A1×1 = (α ∨ β)φ1.

Thus, (φ1, φ
′
2) is a morphism from α to α ∨ β. However, φ2 ' φ′2 by the

homotopy H. Therefore, (φ1, φ
′
2) is a coaffiliated morphism of (f1, f2) with

respect to (h1, h2). �

References

[1] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965),
840–856. https://doi.org/10.2307/2373248

[2] , Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729–756.
https://doi.org/10.2307/2373349

[3] P. Hilton, Homotopy Theory and Duality, Gordon and Breach Science Publishers, New

York, 1965.
[4] J. Kim and K. Y. Lee, Gottlieb subsets with respect to a morphism in the category of

pairs, Bull. Korean Math. Soc. 47 (2010), no. 6, 1311–1327. https://doi.org/10.4134/

BKMS.2010.47.6.1311

[5] K. Y. Lee and M. H. Woo, Cyclic morphisms in the category of pairs and generalized

G-sequences, J. Math. Kyoto Univ. 38 (1998), no. 2, 271–285. https://doi.org/10.

1215/kjm/1250518118

[6] , Cocyclic morphisms and dual G-sequences, Topology Appl. 116 (2001), no. 1,

123–136. https://doi.org/10.1016/S0166-8641(00)00081-X
[7] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987),

no. 1, 63–71. https://doi.org/10.4153/CMB-1987-009-1

[8] J. Z. Pan and M. H. Woo, Exactness of G-sequences and monomorphisms, Topology
Appl. 109 (2001), no. 3, 315–320. https://doi.org/10.1016/S0166-8641(99)00178-9

[9] K. Varadarajan, Generalised Gottlieb groups, J. Indian Math. Soc. (N.S.) 33 (1969),

141–164 (1970).
[10] M. H. Woo and J.-R. Kim, Certain subgroups of homotopy groups, J. Korean Math.

Soc. 21 (1984), no. 2, 109–120.

[11] M. H. Woo and K. Y. Lee, On the relative evaluation subgroups of a CW-pair, J. Korean
Math. Soc. 25 (1988), no. 1, 149–160.

[12] , Exact G-sequences and relative G-pairs, J. Korean Math. Soc. 27 (1990), no. 2,
177–184.

Jiyean Kim

Department of Mathematics

Korea University
Seoul 02841, Korea

Email address: kjy0501@gmail.com

Kee Young Lee

Division of Applied Mathematical Sciences

Korea University
Sejong Campus

2511 Sejong-ro, 30019, Korea

Email address: keyolee@korea.ac.kr

https://doi.org/10.2307/2373248
https://doi.org/10.2307/2373349
https://doi.org/10.4134/BKMS.2010.47.6.1311
https://doi.org/10.4134/BKMS.2010.47.6.1311
https://doi.org/10.1215/kjm/1250518118
https://doi.org/10.1215/kjm/1250518118
https://doi.org/10.1016/S0166-8641(00)00081-X
https://doi.org/10.4153/CMB-1987-009-1
https://doi.org/10.1016/S0166-8641(99)00178-9

