MINIMAL DIGITAL PSEUDOTORUS WITH k-ADJACENCY, $k \in \{6, 18, 26\}$

SANG-EON HAN

Abstract. In this paper, three kinds of minimal digital pseudotori DT_6, DT'_{18} DT''_{26} , which are derived from the minimal simple 4- and 8-curves, MSC_4 and MSC'_8 , are shown and are proved not to be digitally k-homotopy equivalent to each other, where $k \in \{6, 18, 26\}$. Furthermore, the digital topological properties of the minimal digital k-pseudotori are investigated in the digital homotopical point of view, where $k \in \{6, 18, 26\}$.

1. Introduction

Let $\mathbb{Z}(\text{resp. }\mathbb{N})$ represent the set of integers (resp. natural numbers) and let \mathbb{Z}^n be the set of points in the Euclidean *n*-dimensional space with integer coordinates.

A digital picture is commonly represented as a quadruple $(\mathbb{Z}^n, k, \bar{k}, X)$, where $n \in \mathbb{N}$, $X \subset \mathbb{Z}^n$ is the set of finite points, k represents an adjacency relation for X, and \bar{k} represents an adjacency relation for $\mathbb{Z}^n - X$ [1, 2, 8]. We say that the pair (X, k) is a digital image. For $a, b \in \mathbb{Z}$ with $a \leq b$, the set $[a, b]_{\mathbb{Z}} = \{n \in \mathbb{Z} | a \leq n \leq b\}$ is called a digital interval with 2-adjacency [1].

The study on a digital image with a k-connectedness is an important part of discrete geometry. So far, digital images have been studied

Received January 26, 2004. Revised April 10, 2004.

²⁰⁰⁰ Mathematics Subjects Classification:51D25, 65D18, 68R10, 68RXX, 68T10, 68U05.

Key words and phrases: digital k-fundamental group, minimal simple k-curve, minimal digital 26-pseudotorus.

under the standard k-adjacency with relation to the digital (k_0, k_1) continuity, the digital k-homotopy and the digital k-fundamental group,
where $k, k_0, k_1 \in A_n := \{x \in \mathbb{N} | x = 3^n - 1 \text{ or } 2n\}$ for $n \in \mathbb{N}$, but not $n \neq 3$. For $n = 3, k, k_0, k_1 \in \{6, 18, 26\}[1, 2, 8]$.

A digital k-fundamental group was studied in terms of the pointed digital homotopy [1] which is derived from the notion of digital continuity presented in [1, 2].

In this paper, we follow the notions of the digital continuity and the digital homotopy introduced in [1, 2].

The digital homeomorphism have come in use to the classification of digital images, to the study of a digital retract and an extension [2].

Digital images are now investigated with relation to digital (k_0, k_1) continuity, digital (k_0, k_1) -homeomorphism [1, 2, 3, 4] and digital (k_0, k_1) homotopy equivalence [5] with the following general adjacency relations,
where $k_i \in \{3^n - 1(n \ge 2), 18(n = 3), 2n(n \ge 1)\}, i \in \{0, 1\}.$

In this paper, three kinds of minimal digital k-pseudotori in \mathbb{Z}^3 are studied, where $k \in \{6, 18, 26\}$. Namely, DT_6 , DT'_{18} and DT''_{26} are derived from the minimal simple closed 4- and 8-curves, MSC_4 and MSC'_8 in \mathbb{Z}^2 [4].

Furthermore, the digital topological properties of the minimal digital 6, 18 and 26-pseudotori are investigated via their digital homotopical properties, digital k-contractibility and digital (k_0, k_1) -homotopy equivalence [5].

2. Definitions and preliminaries

The convenient digital (k_0, k_1) -continuity in terms of a digital k_i -connectedness with the standard k_i -adjacency was shown, $i \in \{0, 1\}$ [1]. Meanwhile, in order to study the pointed digital homotopy theory intensively, we need recall the digital (k_0, k_1) -continuity of [1, 2] with the general k-adjacency relations.

Definition 2.1. [1] In two digital pictures $(\mathbb{Z}^{n_0}, k_0, \overline{k}_0, X)$ and $(\mathbb{Z}^{n_1}, k_1, \overline{k}_1, Y)$, we say that a map $f: X \to Y$ is digitally (k_0, k_1) -continuous at $x \in X$ if f satisfies the following: For a given point $x \in X$ and every k_0 -connected subset containing x, $O_{k_0}(x)$, $f(O_{k_0}(x))$ is k_1 -connected, where $k_i \in \{3^{n_i} - 1(n_i \ge 2), 18(n_i = 3), 2n_i(n_i \ge 1)\}, i \in \{0, 1\}[1].$

If f is digitally (k_0, k_1) -continuous at any point $x \in X$, then f is called a digitally (k_0, k_1) -continuous map. \square

For a digital image X with k- adjacency and its subimage A, we call (X,A) a digital image pair with k-adjacency. In two digital pictures $(\mathbb{Z}^{n_0},k_0,\bar{k}_0,(X,A))$ and $(\mathbb{Z}^{n_1},k_1,\bar{k}_1,(Y,B))$, we say that $f:(X,A)\to (Y,B)$ is digitally (k_0,k_1) -continuous if $f:X\to Y$ is digitally (k_0,k_1) -continuous and $f(A)\subset B$.

In a digital image $X \subset \mathbb{Z}^n$, two distinct points $x, y \in X$ are called k-connected [8] if there is a k-path $f:[0,m]_{\mathbb{Z}} \to X$ which the image is a sequence (x_0,x_1,\cdots,x_m) from the set of points $\{f(0)=x_0=x,f(1)=x_1,\cdots,f(m)=x_m=y\}$ such that x_i and x_{i+1} are k-adjacent, $i \in [0,m-1]_{\mathbb{Z}}, m \geq 1$. The length of a k-path is the number m above [1,6].

In [1, 2], the digital homotopy was introduced, we now define the digital relative (k_0, k_1) -homotopy on A for some subimage A as follows.

Definition 2.2. Let $(X, k_0) \subset \mathbb{Z}^{n_0}$ and $(Y, k_1) \subset \mathbb{Z}^{n_1}$ be digital images, and $A \subset X$. Let $f, g: X \to Y$ be (k_0, k_1) -continuous functions. Suppose there exist $m \in \mathbb{N}$ and a function $F: X \times [0, m]_{\mathbb{Z}} \to Y$ such that

- for all $x \in X$, F(x,0) = f(x) and F(x,m) = g(x);
- for all $x \in X$, the induced function $F_x : [0, m]_{\mathbb{Z}} \to Y$ defined by $F_x(t) = F(x, t)$ is $(2, k_1)$ -continuous for all $t \in [0, m]_{\mathbb{Z}}$;
- for all $t \in [0, m]_{\mathbb{Z}}$, the induced function $F_t : X \to Y$ defined by $F_t(x) = F(x, t)$ is (k_0, k_1) -continuous for all $x \in X$; and
- for all $t \in [0, m]_{\mathbb{Z}}$, $F_t(x) = x$ for $x \in A$, *i.e.* the induced map F_t on A is fixed.

Then we call F a relative (k_0, k_1) -homotopy on A between f and g, and we say that f and g are relatively (k_0, k_1) -homotopic on A in Y. \square

Especially, if $A = \{x_0\} \subset X$, then we say that F is a pointed (k_0, k_1) -homotopy at $\{x_0\}$ [1].

Roughly, for $A \subset X$, digitally continuous functions $f, g: X \to Y$ are relatively homotopic on A if there is a continuous deformation of f with A fixed in Y and finally, the deformed function coincides with g.

If the identity map 1_X is relatively (k, k)-homotopic on $\{x_0\}$ in X to a constant map with image consisting of some $x_0 \in X$, then we say that (X, x_0) is pointed k-contractible [2].

Especially, for the case of a digital (k, k)-homotopy, we call it a digital k-homotopy and use the notation: $f \simeq_{d \cdot k \cdot h} g$ instead of $f \simeq_{d \cdot (k, k) \cdot h} g$.

Furthermore, if A is a singleton set $\{p\}$ in Definition 2.2, then (X, p) is called a pointed digital image [1].

Furthermore, we say that the image X is k-contractible if $1_X \simeq_{d \cdot k \cdot h} c_{\{x_0\}}$, where $c_{\{x_0\}}$ is a constant map for some $x_0 \in X$ [2].

We say that a digitally (k_0, k_1) -continuous function $f: X \to Y$ is k_1 -nullhomotopic in Y if f is digitally k_1 -homotopic in Y to a constant function $c_{\{y_0\}}, y_0 \in Y$ [1].

Concretely, for a pointed digital image (X, p), a k-loop f based at p is a k-path in X with f(0) = p = f(m), where the number m depends on the k-path above. And we put $F_1^k(X, p) = \{f | f \text{ is a } k\text{-loop based at } p\}$.

For maps $f, g \in F_1^k(X, p)$, *i.e.*, $f : [0, m_1]_{\mathbb{Z}} \to (X, p)$ with $f(0) = p = f(m_1)$ and $g : [0, m_2]_{\mathbb{Z}} \to (X, p)$ with $g(0) = p = g(m_2)$, we get a map $f * g : [0, m_1 + m_2]_{\mathbb{Z}} \to (X, p)$ as follows:

 $f * g : [0, m_1 + m_2]_{\mathbb{Z}} \to (X, p)$ is defined by

 $f * g(t) = f(t), 0 \le t \le m_1$, and $g(t - m_1), m_1 \le t \le m_1 + m_2$. Then $f * g \in F_1^k(X, p)[7]$.

We denote the digital k-homotopy class of f by [f]. Obviously, the homotopy class [f * g] depends on the homotopy classes [f] and [g].

Furthermore, for any $f_1, f_2, g_1, g_2 \in F_1^k(X, p)$ such that $f_1 \in [f_2], g_1 \in [g_2]$, we get the map $f_1 * g_1 \in [f_2 * g_2]$, i.e., $[f_1 * g_1] = [f_2 * g_2]$ [1].

Then $\pi_1^k(X,p) = \{[f]|f \in F_1^k(X,p)\}$ is a group with an operation, $[f] \cdot [g] = [f * g]$ [7], which is called the digital k-fundamental group of a pointed digital image (X,p) [1].

Actually, if p and q belong to the same k-connected component of X, then $\phi: \pi_1^k(X, p) \to \pi_1^k(X, q)$ is an isomorphism [1].

For digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, X)$, $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, Y)$ and a digitally (k_0, k_1) - continuous based map $h: (X, p) \to (Y, q)$, the map h induces a digital fundamental group (k_0, k_1) -homomorphism [1] as follows.

Define $\pi_1^{(k_0,k_1)}(h) = h_*: \pi_1^{k_0}(X,p) \to \pi_1^{k_1}(Y,q)$ by the equation $h_*([f_1]) = [h \circ f_1]$, where $[f_1] \in \pi_1^{k_0}(X,p)$, which is well defined. Particularly, if $k_0 = k_1$, we use the following notation, $\pi_1^{k_0}(h)$ [1]. If X is k-contractible, then $\pi_1^k(X,p)$ is trivial [1].

3. Minimal simple closed k-curves and digital 26-pseudotori

For classifying digital images, we need special relations among digital images with k-adjacency relations. One of them is a digital (k_0, k_1) -homeomorphism as follows: For digital images X with k_0 - adjacency, Y with k_1 -adjacency, a map $h: X \to Y$ is called a digital (k_0, k_1) -homeomorphism if h is digitally (k_0, k_1) -continuous and bijective and further $h^{-1}: Y \to X$ is digitally (k_1, k_0) -continuous [3, 4]. Then we denote it by $X \approx_{d\cdot(k_0,k_1)\cdot h} Y$. If $k_0 = k_1$, we say that it a digital homeomorphism [1, 2].

For a digital image $X \subset \mathbb{Z}^n$, distinct two points $x, y \in X$ are called k-connected [8] if there is a k-path $f: [0,m]_{\mathbb{Z}} \to X$ whose image is a sequence (x_0,x_1,\cdots,x_m) from the set of points $\{f(0)=x_0=x,f(1)=x_1,\cdots,f(m)=x_m=y\}$ such that x_i and x_{i+1} are k-adjacent, $i \in [0,m-1]_{\mathbb{Z}}, m \geq 1$. The length of a k-path is the number m [8]. And a simple k-curve is considered as a sequence (x_0,x_1,\cdots,x_m) of an image

of the k-path such that x_i and x_j are k-adjacent if and only if j = i + 1 or j = i - 1 [1].

For one of the general k-adjacency relations on \mathbb{Z}^n , a simple closed k-curve in X [1] is the image of a (2,k)-continuous function $f:[0,m-1]_{\mathbb{Z}}\to X$ such that f(i) and f(j) are k-adjacent if and only if either $j=i+1(\bmod m)$ or $i=j+1(\bmod m)$. And a closed k-curve in X is the image of a (2,k)-continuous function $f:[0,m-1]_{\mathbb{Z}}\to X$ such that f(i) and f(j) are k-adjacent if either $j=i+1(\bmod m)$ or $i=j+1(\bmod m)$.

Now we introduce the minimal simple closed curves in \mathbb{Z}^2 . For clarifying the digital k-connectedness, we use the subscript k for the denotation of the minimal simple closed k-curves by MSC_k or MSC'_k according to $k \in \{4, 8\}$, i.e., MSC_8 , MSC_4 and MSC'_8 [4]:

(1) Let MSC_8 be the set which is digitally homeomorphic to the image,

$$\{(0,0),(-1,1),(-2,0),(-2,-1),(-1,-2),(0,-1)\}\ [3,4].$$

(2) Let MSC_4 be the set which is digitally homeomorphic to the image,

$$\{(0,0),(0,1),(-1,1),(-2,1),(-2,0),(-2,-1),(-1,-1),(0,-1)\}$$
 [3, 4].

(3) Let MSC_8' be the set which is digitally homeomorphic to the image,

$$\{(0,0),(-1,1),(-2,0),(-1,-1)\}\ [3,4].$$

Actually, MSC_8 is not 8-contractible [4] and MSC_4 and MSC_8 are not 4-contractible either [4]. But MSC_4 and MSC_8 are 8-contractible (Theorem 3.1).

Theorem 3.1 [1] The minimal simple closed 4-curve, MSC_4 is 8-contractible.

The minimal simple closed k-curves, MSC_8 , MSC_4 and MSC'_8 above are distinct up to a digital homeomorphism [3, 4].

For the digital images X with k_1 -adjacency and Y with k_2 -adjacency, the product digital image $X \times Y = \{(x,y)|x \in X, y \in Y\}$ with k_3 -adjacency is taken [6]. The k_3 -adjacency depends on the k_1 - and k_2 -adjacency relations [6].

Actually, $X \times Y$ is digitally homeomorphic to $Y \times X$ with the k_t -adjacency [6] above.

Furthermore, from the minimal simple closed k-curves, MSC_4 and MSC'_8 , the following product images are established [6]:

$$(MSC_4 \times MSC_4, 32) \subset \mathbb{Z}^4,$$

 $(MSC_4 \times MSC_8', 64) \subset \mathbb{Z}^4$ and
 $(MSC_8' \times MSC_8', 80) \subset \mathbb{Z}^4.$

Moreover, we get the following minimal digital k-pseudotori in \mathbb{Z}^3 with relation to the digital homeomorphism, where $k \in \{6, 18, 26\}$, i.e.,

- (4) $MSC_4 \times MSC_4 \approx_{d \cdot (32,6) \cdot h} DT_6$ in $(\mathbb{Z}^3, 6, 26, DT_6)$,
- (5) $MSC_4 \times MSC_8' \approx_{d \cdot (64,18) \cdot h} DT_{18}'$ in $(\mathbb{Z}^3, 18, 6, DT_{18}')$,
- (6) $MSC_8' \times MSC_8' \approx_{d \cdot (80,26) \cdot h} DT_{26}''$ in $(\mathbb{Z}^3, 26, 6, DT_{26}'')$,

For clarifying the digital k-connectivity of the minimal digital pseudotorus in \mathbb{Z}^3 , where $k \in \{6, 18, 26\}$, we use the subscript k like DT_6, DT'_{18} and DT''_{26} .

We prove that the digital k-pseudotori in \mathbb{Z}^3 , DT_6 , DT'_{18} and DT''_{26} are not digitally 6-, 18-, or 26-homotopy equivalent to each other in section 5.

5. Digital topological properties of the digital 26-pseodotori

The notion of digital (k_0, k_1) -homotopy equivalence is now introduced in order to classify digital images.

Definition 5.1.[5] Given two digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, X)$ and $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, Y)$, if there are a digitally (k_0, k_1) -continuous map $h: X \to Y$ and a digitally (k_1, k_0) -continuous map $l: Y \to X$ such that $l \circ h \simeq_{d \cdot k_0 \cdot h} 1_X$

and $h \circ l \simeq_{d \cdot k_1 \cdot h} 1_Y$, then the map $h : X \to Y$ is called a digital (k_0, k_1) -homotopy equivalence. And we use the notation, $X \simeq_{d \cdot (k_0, k_1) \cdot h \cdot e} Y$. Furthermore, if $k_0 = k_1$, we call h a digital k_0 -homotopy equivalence and denote it by $X \simeq_{d \cdot k_0 \cdot h \cdot e} Y$. \square

Theorem 5.2 The minimal simple closed k-curves MSC_4 , MSC_8 and MSC'_8 are distinct up to the digital k-homotopy equivalence, $k \in \{4, 8\}$ except that $MSC_4 \simeq_{d\cdot 8 \cdot h \cdot e} MSC'_8$.

Proof. We can easily see the following cases: MSC_4 is not digitally 4- or 8-homotopy equivalent to MSC_8 , MSC_4 is not digitally 4- or 8-homotopy equivalent to MSC_8 either, MSC_8 is not digitally 8-homotopy equivalent to MSC_8 , and finally MSC_8 is not digitally 8-homotopy equivalent to MSC_4 either.

Finally, we only prove the following: $MSC_4 \simeq_{d\cdot 8\cdot h\cdot e} MSC_8'$. Meanwhile, we can assume MSC_8' to be a subimage of MSC_4 . Let us consider $MSC_4 = \{(0,0),(0,1),(-1,1),(-2,1),(-2,0),(-2,-1),(-1,-1),(0,-1)\}$ and assume $MSC_8' = \{(0,0),(-1,1),(-2,0),(-1,-1)\}$. Then we consider two digital continuous maps, $l: MSC_8' \to MSC_4$ as the inclusion and $h: MSC_4 \to MSC_8'$ is mapped as follows:

$$h((0,1)) = (0,0), \ h((-2,1)) = (-1,1), \ h((-2,-1)) = (-2,0),$$

 $h((0,-1)) = (-1,-1)$ and for all point $p \in \{(0,0),(-1,1),(-2,0),(-1,-1)\}, \ h(p) = p$. Then we get $MSC_4 \simeq_{d.8.h.e} MSC_8'$, as required. \square

For three kinds of minimal digital k-pseudotori, where $k \in \{6, 18, 26\}$, DT_6 , DT'_{18} , and DT''_{26} , we get the digital k-fundamental groups of them. And we now prove that DT_6 , DT'_{18} and DT''_{26} are not digitally k-homotopy equivalent to each other, where $k \in \{6, 18, 26\}$.

Theorem 5.3 The group $\pi_1^k(DT_{26}'', t_0)$ is trivial, where $t_0 \in DT_{26}''$ and $k \in \{6, 18, 26\}$.

Proof. Since DT_{26}'' is assumed to be 26-homeomorphic to $\bigcup_{i \in M} T_i$ below, where $M = [1, 4]_{\mathbb{Z}}$

$$T_1 = \{t_0 = (0,0,0), (1,0,1), (2,0,0), (1,0,-1)\},\$$

$$T_2 = \{(-1,1,0), (-1,2,1), (-1,3,0), (-1,2,-1)\},\$$

$$T_3 = \{(-2,0,0), (-3,0,1), (-4,0,0), (-3,0,-1)\} \text{ and }$$

$$T_4 = \{(-1,-1,0), (-1,-2,1), (-1,-3,0), (-1,-2,-1)\},\$$

 DT_{26}'' is proved to be 26-contractible from the similar method as proof of Theorem 3.1. And further, each point in DT_{26}'' is distinct from each other with respect to the k-connectedness, where $k \in \{18, 6\}$. Then we get easily that $\pi_1^k(DT_{26}'', t_0)$ is group isomorphic to the trivial group, where $k \in \{18, 6\}$. \square

Similarly, we observe that $\pi_1^k(DT_6, p_1)$ is a trivial group, where $k \in \{18, 26\}$, but $\pi_1^6(DT_6, p_1)$ is not abelian group for $p_1 \in DT_6[6]$.

Theorem 5.4 The minimal digital pseudotori, DT_6 , DT'_{18} and DT''_{26} , are different from each other up to the digital k-homotopy equivalence, $k \in \{6, 18, 26\}$.

Proof. The digital (k_0, k_1) -homotopy equivalence preserves the digital k_0 -contractibility into k_1 -contractibility [5]. More precisely, DT_{26}'' is 26-contractible, but DT_{26}'' is not k-contractible, $k \in \{18, 6\}$. Further, DT_{26}'' can not be digitally 26- or 6-homotopy equivalent to DT_6 . Similarly, DT_{18}' must not be digitally 18- or 26-homotopy equivalent to DT_{26}'' either, and DT_{18}' is not be digitally 18- or 6-homotopy equivalent to DT_6 .

Moreover, since the digital (k_0, k_1) -homotopy equivalence preserves the digital k_0 -fundamental group into the digital k_1 -fundamental group [5] we can see that DT_6, DT'_{18} and DT''_{26} are distinct from each other Theorems 5.3 and 5.4. \square

References

- [1] L. Boxer , A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision,10 (1999) , 51-62
- [2] , Digitally continuous functions, Pattern Recognition Letters, 15(1994), 833-839
- [3] S. E. Han, Computer Topology and Its Applications, Honam Math. Jour. 25 (2003), 153-162
- [4] , Digital (k_0, k_1) -covering map and its properties, Honam Math. Jour. 26(No.1) (2004),107-117
- [5] ————, (k_0, k_1) -homotopy equivalence and its applications, submitted
- [6] , Non-product property of the digital fundamental group, Information Sciences(to appear), Available online at www.sciencedirect. com,(2004)
- [7] E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987), 227-234
- [8] A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4 (1986), 177-184

Department of Computer and Applied Mathematics, College of Natural Science, Honam University, Gwangju, 506 - 714, Korea e-mail:sehan@honam.ac.kr,

Tel: 82-62-940-5421, Fax: 82-62-940-5644