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ON THE HOMOLOGY OF THE
MODULI SPACE OF G, INSTANTONS

YouNGGI CHO1

Introduction

Let 7 : P — S* be a principal G-bundle over §* whose the structure
group G is a compact, connected, simple Lie group. Since m3(G) =
m4(BG) = Z, we can classify the principal bundle P; over S* by the map
S* — BG of degree k. Atiyah and Jones [2] showed that C; = A /GE
is homotopy equivalent to Q3G ~ Q}{ BG where Ay is the space of the
all connections in Py and G is the based gauge group which consists
of all base point preserving automorphisms on P;. Here, "X is the
space of all base-point preserving continuous map from S™ to X. Let
M be the space of based gauge equivalence classes of all connections
in Py satisfying the Yang -Mills self-duality equations, which we call the
moduli space of G instantons.

Then there is a natural inclusion map 1 : My — Cx. While Gy ~ Q?CG
is homotopy equivalent to Q3G for any component &, each M is not
homotopy equivalent to each other generally. In fact, the dimension
of the space of instantons My increases as k increases. Moreover the
inclusion map #: My, — Co induces a homotopy equivalence [4] where
M, and Co, are the direct limits under the inclusions. Especially M =
[Ixs0 M4 has additional structures [3], that is, it behaves like four fold
loop space enough to define the homology operations @y, @2, Q3 up to
homotopy.

In this paper we first compute the homology of Q23G>, that is, M,
the direct limit of My for G;. After then we study its gauge group and
the Ml .
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1. The homology of Q3G,

Let E(z) be the exterior algebra on z, P(z) be the polynomial algebra
on z and I'(z) be the divided power algebra on z which is free over
vi(z) with the product vi(z)y; = (i?j)’y,'ﬂ-. Throughout this paper,
the subscript of an element always means the degree of an element, for
example the degree of a; is i. For a (n + 1)-fold loop space, there are
homology operations,

Qi(p-1) H4(9n+1x5 F)— Hpq+i(p—l)(9n+1X9Fp)

defined for 0 < ¢ < n when p = 2 and for 0 < ¢ < n, 1 = ¢ for mod 2
when p is an odd prime which is natural for a (n + 1)-fold loop space.
Let Q¢ be the iterated operation Q; - - - @i(a times) and 3 be the mod p
Bockstein operation.

We recall the definition of the exceptional Lie group G;. There are
only four division algebras over R, the real numbers 12, complex numbers
C, the quaternions H and the Cayley numbers K. K is R? as a vector
space and it is the non-associative algebra. Then G3 is the group of
automorphisms of K. In fact G is a closed subgroup of O(7). Hence
it is a compact Lie group. By the Cartan-Killing classification we call
G, the exceptional Lie group of type (3,11). First we have the following
well-known facts.

THEOREM 1.1.

H*(Gy; Fp) = E(z5) ® P(23)/(z3)
Sq2.1:3 = T
H*(Gy; Fp) = E(z3,z11) for odd prime p.

The group G, as a subgroup of O(7), acts on S7. The action is transitive
and the isotropy group is SU(3)[5, App A]. So we have the following
fibration

SU(3) — Gy —» S°.

First we compute H,(Q2G,; F,) and next H.(Q3G2; F)).
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THEOREM 1.2.

H.(Q*Gq; Fy) = E(z1) ® P(z)
®P(Qiz7) :a>0)Q P(Q}z : a>0).
H.(Q*Gy; Fp) = E( p—121:a>0)® P(AQ; 121 :a > 0)
® E(Qp_129 :a > 0)® P(SQ%_125 : a > 0)
for odd prime p.

Proof. Consider the following path loop fibration
QG; — * — G,

By the Eilenberg-Moore spectral sequence converging to H*(QG,; Fy),
as a Hopf algebra we have

E; = Torg~(g,,r,)(F2, F3)

= Torp(z,)/(s2)0E(zs)(F2, F2)
= TorP(xs)/(zg)(FZa F2) ® TorE(zs)(F2’ F2)
= E(y2) ® T'(y10) ® I'(y4).

Since the E, term concentrates on even dimensions, the spectral sequence
collapses from F,. Hence F, = E... Since the E,, term is the associated
bigraded algebra from the some filtrations of H*(QG2; Fy), we should
determine the algebra structure on H*(QG;; Fy) hiden in E, by the
filtration. Moreover the Eilenberg-Moore spectral sequence preserve the
steenrod actions. So from the fact that Sq?z; = z5, we have Sy, = y4,
that is, y3 = ys. From this, we can solve the algebra extension problem
and we get

H*(QG2; Fy) = P(y2)/(y2) @ T(y10) ® T(ys).
Note that as a algebra

F(I) = ®iZOE(72‘($))-
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We use the Eilenberg—Moore spectral sequence again covering to

H,(Q2G,; Fy) with
Ey = Extge(9G,;r,)(F2, F2)
= EXEP(y,)/(1$)0@13 0 B(15i (48)) @i 0 Blvzs (v10)) (F2: F2)
= E(Zl) ® P(ZG)
®P(Qiz7):a>0)®P(Qfz : a > 0).
Note that the source of the first differential is an indecomposable ele-
ment and the target is an primitive element. Checking the bidegrees
of all generators and primitive elements, there is no differential from
E,. Hence the Eilenberg—Moore spectral sequence collapses from E,. So
we get H,(Q2G,; F,). Now we turn to the odd prime case. Like the
mod 2 case, we use the Eilenberg—Moore spectral sequence converging
to H*(QGy; F,) with
E2 = TorH‘(Gg;Fp)(vaFp)
= TorE(la®E(Ilo)(FP’ FP)
= T'(y2) ® T'(y10)-

Since all elements in F, are even dimensional, the spectral sequence
collapses from E; and we get

H*(QG2; Fp) = I'(y2) ® T(y10)
as a Hopf algebra. Note that as a algebra

D(z) = @izo P(7pi (2))/(7pi (2)P)-
We exploit the Eilenberg—Moore spectral sequence again converging to
H.(Q%Gq; F,) with
E; = Exty=(ay;F,) (Fps Fp)
= Ri>0EXt Py (42))/(7,: (42)P) 8130 (3, (¥10)) /(7 (¥10)7) (Ep Fp)
= E(Q;—yzl e >0)® P(ﬂQ;_lzl) ca>0)
® E(Qp_129:a>0)® P(BQy_129 : a > 0).
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By the bidegree reason as mod 2 case, the spectral sequence collapses
from the E,-term and we get the conclusions.

Now we cite the following theorem for next step. Since m3(G) = Z
for a compact, connected, simple Lie group G, mo(*G) = Z. Let Q3G
be the zero component of Q3G.

THEOREM 1.3 [3, THM 4.17].

H,(Q,SU(3); F2) = P(Q3(Q2[1] ¥ [-2]) : a > 0)
® P(Q1Q3vs : a > 0,6 > 0)
H(QQSU(3); Fp) = P(Qg(p—l)(QZ(p—l)[I] *[-p]):a>0)
® E(Qp-18Q5—1y(Q2o-1)[1] * [-)) :
a>0,b2>0)
® P(ﬂQ;_1ﬂQg(p_1)(Q2(p—1)[1] *[—p]):
a>0,52>0)
® P(Q;(p_l)uz ta >0)
® E(Q;_lﬂQg(p_l)(ug) ta>0,b>0)

@ P(ﬂQ;qﬁQg(p_l)uzz ta>0,b>0)
for odd prime p.

THEOREM 1.4.

H. (G2 F») = P(Qfws :a > 0)® P(Q*Q3ws) : a > 0,b > 0)
® P(QiQiws : a > 0,b > 0).
H.(923Gai Fy) = P(Q3p1y(Qapn1] * [~p)) : 0 > 0)
& E(QZ_I/BQZ(,,_l)(Qz(p~1)[1] * [_pD :
a>0, b>0)
® P(ﬂQ;-—lﬂQg(p—l)(QQ(p—l)[1] * [~p]) :
a>0, b>0)
® P(Qyp—1y(ws) : @ > 0)
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® E(Q%_18Q%,_1y(ws) 1 a > 0,b> 0)

® P(BQ2_,BQ%., _1)(ws) :a> 0,b > 0)
for odd prime p.

Proof. Consider the following fibration:
Q3G — x — 02G,.
Consider the Eilenberg-Moore converging to H,(Q3G2; Fp) with

E; = Cotory, (02G,;ry) (F2, F2)
= P(Q%ws : a > 0)® P(Q*Q5wes) : a > 0,b>0)
® P(Q‘I’ngg :a>0,b>0).
E; = Cotory, (a2¢,;7,)(Fp, £p)
= P(Q;(p~l)(Q2(p—l)[1] *[—p]) 1 a > 0)
® E(Qp-18Q3(5-1)(Qap-v)[1] * [-p]) 1 @ 2 0,5 2 0)
® P(BQ5-18Q5p—1)(@ap-1y (L * [-p]) : a > 0,62 0)
® P(Qg(p_l)(ws) ta>0)
® BE(Q5_18Q5,_1)(ws) 1@ >0,b>0)

® P(BQ5—18Q5p—1)(ws) : a > 0,b>0)
for odd prime p.

From this stage we should compute the higher differentials for next stage
until E,,. So the size of the E,~term, i.e. the size of the H (Q3G2 : F})
as a F, module is less than equal to the size of the Ey-term. Consider
another fibration:

QSU(3) — N3G, — Q°SE.
Recall that

H, (PS5 Fy) = P(Q4Q5(ws) : a > 0,6 > 0).
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H.(Q*S% Fp) = E(Qp_yws : a > 0)
® P(,BQ;_IUJ;; ta>0)
® P(Q5(p—1)(ws) 1 a > 0)
® E(Q;—1ﬂQg(p_1)(ws) :a>0,b>0)
® P(ﬁQ;_lﬂQg(p_l)(wg) ta>0,b>0).

Then we should have the first non-trivial differential from w; to the 2
dimensional primitive element in H.(3SU(3); F,) because of the fol-
lowing reasons: If the differential from w; is trivial, then the Serre
spectral sequence collapses from the E,-term by the naturality of the
Dyer-Lashof operation. But in that case the size of H.(Q3G2; F}) is
strictly bigger than the possible maximum size of H.(Q3G>; F,) through
the Eilenberg-Moore spectral sequence. This is a contradiction. So we
have the non-trivial differential. For p = 2, we have the differential from
w3 to Q2[1] * [—2]. By the naturality of the Dyer-Lashof operation, we
have the differentials from Q}Q%ws to Q4Q2%(Q2[1] * [-2]) for a,b > 0.
Since Q1(Q2(1]*[—2]) = 0 and Q3(Q2[1]*[-2]) = 0 in H.(QSU(3); F3)

by the dimensional reason of the primitive element, we get that

Ew = P(Q3Q5(us) : a,b > 0) ® P((Q4w*)? : a > 0)
® P(QiQ3ws 1 a,b > 0).

Note that |[(Qiws)?| = |Q3we| and |QQ5  us| = |Q3+ Q4ws|. So
this E,—term is the same size of the E;—term of the previous Eilenberg—
Moore spectral sequence. Hence the Eilenberg-Moore spectral sequence
collapses from E; and we finish the mod 2 case. Now we turn to the odd
prime case. As we already proved, we have the non-trivial differential
from ws. Since ug is the only 2-dimensional primitive element. The
target of the differential should be uy. Then by the naturality of the
Dyer-Lashof operation, there are differentials from QF_jw3,a > 0 to
Qg(p_l)w,a > 0, from QgﬂQ;’,_lw3,a > 0,6 >0to Q;_lﬂQg(p_l)UZ,
a >0, b>0 and from (Q‘U‘ﬁQg_lwg)”"l ® Qp-18Qup-1)u2,a = 0,0 >
0 to ﬂQ;f}ﬂQg(P_l)u% a > 0,b > 0. Since there does not exist 7
dimensional primitive element in H,(§SU(3); Fp), there is no other
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differential. So we get the E—term. Comparing the size of surviving
elements in this E~term with the E;—term of previous the Eilenberg-
Moore spectral sequence, we know that these are the same size and
this fact means that the previous Eilenberg-Moore spectral sequence
collapses from the E;-term and we get the answer.

2. M; and Gauge group

Let Gi be the Gauge group of the principle G, bundle P, over S*
with the instanton number k. From [1, Prop 2.4] we can get

BGy ~ Map,, (S*, BG,).

where the subscript Py denotes the component of a map of M into BG,
which induces P;. Here >~ means the homotopy equivalence.

THEOREM 2.1.
H.(BGx; F,) = H,(93Gy; F,) ® H.(BGy; F,)
as a algebra for odd prime p.
Proof. There is a fibration:
Map*(5*, BG2) — Map(S*, BG,) — BG,

where * means the base point preserving maps. Since Map*(S*, BG,) =
QG2 x Z, we have the following fibration:

Q3G — Mapp, (S*, BGy) — BG,.
For odd prime p, consider the Serre spectral sequence converging to
H.(Mapp, (5%, BG;); F;) with

E; = H(BGq; Fy) ® H (Q3Ga; F).
Since the target of the first differential is primitive and there are no

3-dimensional, 11-dimensional primitive elements in H.(Q3G>; F}), the
Serre spectral sequence collapses from E, and we get that

H.(BGx; Fp) = HJ Q3G F,) @ Ho(BGy; Fy).

Consider the Bockstein spectral sequence with E, = H,(X; F,) con-
verging to (H,(X; Z)/torsion)®F,. Here the differentials in E;~term are
interpreted in terms of the Steenrod operation 3 and higher differentials
in terms of higher order Bockstein operators.
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PRrOPOSITION 2.2. H,(BGy;Z) has p-torsion of all order for odd
prime p.

Proof. We consider the Bockstein spectral sequence with E;=H,(BGy;
F}) converging to (H.(BGy; Z)/torsion) ® F,. So we have
By = P(Q3(p-1)(Q2-n[1] * [-p]) 1 2 2 0)
® E( ;—lﬂQg(p—l)(QZ(p—l)[l] *[~p]):a>0,02>0)
® P(ﬂQ;—lﬁQg(p—1)(Q2(p—1)[1] *[—p]):a>0,b>0)
® P(Q3p—1y(ws) : a > 0)
® E(Q%_18Q%5,_1y(ws) : a >0,b>0)
® P(ﬁQ;_lﬂQg(p_l)(wg) ca>0,b>0)
® P(z4) @ P(z12)
Since the first differential is determined by 3, a tensor product of the
following the form: E(Q;_lﬁQg(p_l)(x))®P(ﬂQ;_lﬂQg(p_l)(m)) disap-
pear after K stage. Hence
Ey = P(Q3(p—1)(Q2p-1y[1] % [-p]) : @ 2 0)
® E(ﬂQg(p-—l)(Qz(p—l)[l] *[~p]) : 6> 0)
® P(Q3(p—1)(ws) 1 a > 0)
® E(BQ5,_1y(ws) : 5> 0)
® P(z4) ® P(z12)

The (r + 1)-th order Bockstein operation is determined by

r r_
Bry12? = zP "' fz.

For example B;z? = zP?~!Bz. So there exist the higher differentials in
every stage. This mean that H.(BGk; Z) has p-torsion of all order and

finally get
Eoo = P(wg) ® P(IB4) ® P(.’Elz).
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COROLLARY 2.3. BGiy ~¢ K(Z,4) x K(Z,8) x K(Z,12).
There is another way to get above Corollary.

THEOREM 2.4 [1, THM 2.6]. Let ny(Y) = 0forq # nand mp(Y) = n.
Then
Map(X,Y) ~ [ K(H(X,x);n - g).
q
Over the rationals BG, ~q K(Z,4) x K(Z,12). Hence

Map(S*, BG,) ~¢ Map(S*, K(Z,4)) x Map(S*, K(Z,12)).
Applying the above Theorem over @), We have
Map(S*, BG) ~¢ Map(S*, K(Z,4)) x Map(S5*, K(Z,12))
~ HK(H"(S4; 7,4 —q) X HK(HQ(SA; 7,12 — q)
q q

~Zx K(Z,4) x K(Z,8) x K(Z,12).
Hence since Map(S*, BG;) ~ Map,, (5*, BG;) x Z,

ng = Mappk(54,BG2)
~o K(Z,4) x K(Z,8) x K(Z,12).

So we recover Corollary 2.3.

We denoted by M;(G) the based moduli space of all G instantons with
instanton number 1. Let M} (@) be the moduli space of all G instantons
with instanton number 1, that is, the space of all G instantons with
instanton number 1 modulo the full gauge group. Let Cg(SU(2)) be the
centralizer of SU(2) in G.

THEOREM 2.5 [3, PrROP 3.1]|. Let G be a compact simple simply con-
nected Lie group. Then the based moduli space M;(G) fibers trivially
over M(G) with the fiber G/Cq(SU(2)) and M;(G) is homeomorphic
to M;(SU(2)) which is homeomorphic to the five ball B.

Therefore M;(G>) is homeomorphic to G2/Cq,(SU(2)) x B®. Note that
SU(2) = §3. We turn now to the study of Cg,(SU(2)).
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We recall the basic informations of G, from [5, App A]. K is R® as a
vector space spanned by eg, e;, €3,..., e7. For the multiplicative table
consider all triples (p,g,r) which can be obtained from the following
triples: (1,2,4), (2,3,5), (3,4,6), (4,5,7), (5,6,1), (6,7,2), (7,1,3). For such
triple (p, ¢,r) the subspace spanned by eg, €,, €4, €, is a subalgebra and
the linear transformation of the quaternion numbers @ to this subalgebra
which sends 1,2, 7,k to eg, ep,eq,e, is isomorphism. For example, e;e; =
€4 = —€3€1, €264 = €] = —€4€3, €4€] = €3 = —eje4,e2 = €2 = 2 = —¢y.
G, is the automorphism group of K and a subgroup of O(7). Each
element of G; is an orthogonal transformation leaving fixed the unit
vector eg.

We consider H = {7 € G3|7(e1) = e1,7(e2) = €3} and the map from
H into K given by 7 — 7(e7). Then the image of the map is the set of
unit vectors which are orthogonal to e;, es, e4, that is, the unit sphere
in the four dimensional space and the map from H onto the image is a
homeomorphism. H = S3. Hence

C;,(S%) = {r' € Ga|7(r'(z)) = 7'(7(z)) for all T € H, z € K}.

For 7 € H, 7(es) = 7(e1e2) = 7(e1)7(e2) = e4 and let 7(e7) = aye3 +
ases+azeg+aqer for some constant aq, as, az, ag. Then from the multiple
table, 7(e3) = asez+azes—azeg—ajer, T(e5) = —azezt+azes+aeg—azer,
7(es) = aze3 — ares + ages — azer. Through the elementary calculations
using the above facts, we can get that the only element in G2 which
commutes with every element in H 1s the identity automorphism. Hence
Ce,(S?) is trivial. So we get

PROPOSITION 2.6. M{(G>) is homeomorphic to G3 x B5.
Then from Theorem 1.1
COROLLARY 2.7.

H*(My(G2); Fy) = E(zs5) ® P(z3)/(z3),
H*(M1(G3); Fp) = E(z3,z11) for odd prime p.
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