• Title/Summary/Keyword: Ground deterioration

Search Result 207, Processing Time 0.02 seconds

A Study on the Evaluation of Stability due to Ground Deterioration of Slope (사면의 지반 열화로 인한 안정성 평가에 관한 연구)

  • Han, Young-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.83-92
    • /
    • 2018
  • The lapse of time may cause in the slope structure various deterioration phenomenon progresses in the ground of slope, and collapse due to deterioration of strength, resulting in a decrease in the service life. The approach to slope stability due to the ground deterioration is a different concept from the existing limit equilibrium analysis, which is limited to the physical characteristics and geometrical structure of ground. In this study, we conducted a comparative analysis of various literature studies related to the slope failure characteristics and behaviors to presented the optimal formulas for shear strength reduction, such as the exponential function, the logarithmic function and the inverse hyperbolic function. And then a case study was performed on cut slope of Gyeongbu High Speed Rail construction site along the Yangsan fault zone, where the slope failure of shale layer vulnerable to deterioration occurred. As a result, it was confirmed that landslide occurred due to reduction of shear strength by deterioration, as safety factor is approx. 1.0 at the time when the slope failure occurred. Based on the comprehensive case study, as a quantitative approach to the evaluation of slope stability due to deterioration of ground, finally we propose a method for evaluating slope stability with optimal strength reduction curves.

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.

A Study on the Concrete Lining Behavior due to Tunnel Deterioration (터널 열화로 인한 콘크리트 라이닝의 거동에 관한 연구)

  • Han, Young-Chul;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.21-34
    • /
    • 2014
  • This paper studies the time-dependent behaviors of tunnel and surrounding ground due to tunnel deterioration. In the first part, the literature on deterioration characteristics of tunnels was reviewed. In the second part, a numerical analysis was performed to investigate the behavior of concrete lining on the typical section of Korean high-speed rail tunnel (weathered rock) after determination of input variables related to deterioration impact. The result shows that the settlement at the crown of tunnel and surface ground increased up to 7.0% and 30.2% of the total settlements during construction stage, respectively, and the internal convergence reduction of 9.0 mm for concrete linings was generated within 30 years after completion of tunnel construction. Also the loosening height increased up to 2.55 times of tunnel height within 50 years, which is higher than that of Terzaghi's recommendation on ultimate state. Due to this process of extending zones, it is found that additional loads were applied to concrete lining with the axial stress about 3.20~3.66 MPa, which accelerates tunnel deterioration. Finally the quantitative design approach to evaluate time-dependent behavior of lining and surrounding ground due to tunnel deterioration was proposed.

Evaluation on Surface Scaling and Frost Resistance for concrete Deteriorated due to Cyclic Freezing and Thawing with Inherent Chloride

  • Kim, Gyu Yong;Cho, Bong Suk;Lee, Seung Hoon;Kim, Moo Han
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.177-185
    • /
    • 2007
  • The purpose of this study is to evaluate freezing-thawing and surface scaling resistance in order to examine the frost durability of concrete in a chloride-inherent environment. The mixing design for this study is as follows: 3 water binder ratios of 0.37, 0.42, and 0.47; 2-ingredient type concrete (50% OPC concrete and 50% ground granulated blast-furnace slag), and 3-ingredient type concrete (50% OPC concrete, 15% fly ash, and 35% ground granulated blast-furnace slag). As found in this study, the decrease of durability was much more noticeable in combined deterioration through both salt damage and frost damage than in a single deterioration through either ofthese; when using blast-furnace slag in freezing-thawing seawater, the frost durability and surface deterioration resistance was evaluated as higher than when using OPC concrete. BF 50% concrete, especially, rather than BFS35%+FA15%, had a notable effect on resistance to chloride penetration and freezing/expansion. It has been confirmed that surface deterioration can be evaluated through a quantitative analysis of scaling, calculated from concrete's underwater weight and surface-dry weight as affected by the freezing-thawing of seawater.

Evaluation of Concrete Bridge Deck Deterioration Using Ground Penetrating Radar Based on an Extended Common Mid-Point Method (확장형 공통중간점법 기반 지표투과레이더를 이용한 콘크리트 교량 바닥판 열화 상태 평가)

  • Baek, Jong Eun;Lee, Hyun Jong;Oh, Kwang Chin;Eom, Byung Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.82-92
    • /
    • 2012
  • This study proposed a new non-destructive evaluation method for concrete bridge deck deterioration using ground penetrating radar (GPR). To calculate dielectric constant of the concrete bridge deck, an extended common mid-point (XCMP) method was developed for a two-layered structure using an air-coupled GPR antenna setup. The deterioration conditions of the concrete bridge deck such as deterioration depth was evaluated based on the dielectric constant and surface-to-average dielectric constant ratio of the concrete bridge deck. A GPR field test was conducted on an old concrete bridge with asphalt concrete surfacing to validate the new evaluation method. The test results showed that the newly proposed method estimated pavement thickness and deterioration depth of the concrete deck in a reasonable level.

Behavior of double lining due to long-term hydraulic deterioration of drainage system

  • Shin, Jong-Ho;Lee, In-Keun;Joo, Eun-Jung
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1257-1271
    • /
    • 2014
  • The hydraulic deterioration of the drainage system in tunnel linings is one of the main factors governing long-term lining-ground interactions during the lifetime of tunnels. Thus, in the design procedure of a tunnel below the groundwater table, the possible detrimental effects associated with the hydraulic deterioration should be addressed. Hydraulic deterioration in double-lined tunnels can occur because of reasons such as clogging of the drainage layer and drain-pipe blockings. In this study, the coupled mechanical and hydraulic interactions between linings due to drain-pipe blockings are investigated using the finite-element method. A double-lined structural model incorporating hydraulic behavior is developed to represent the coupled structural and hydraulic behavior between the linings and drainage system. It is found that hydraulic deterioration hinders flow into the tunnel, causing asymmetric development of pore-water pressure and consequent detrimental effects to the secondary lining.

Full-waveform Inversion of Ground-penetrating Radar Data for Deterioration Assessment of Reinforced Concrete Bridge (철근 콘크리트 교량의 열화 평가를 위한 지표투과레이더 자료의 완전파형역산)

  • Youngdon Ahn;Yongkyu Choi;Hannuree Jang;Dongkweon Lee;Hangilro Jang;Changsoo Shin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.2
    • /
    • pp.5-14
    • /
    • 2024
  • Reinforced concrete bridge decks are the first to be damaged by vehicle loads and rain infiltration. Concrete deterioration primarily occurs owing to the corrosion of rebars and other metal components by chlorides used for snow and ice melting. The structural condition and concrete deterioration of the bridge decks within the pavement were evaluated using ground-penetrating radar (GPR) survey data. To evaluate concrete deterioration in bridges, it is necessary to develop GPR data analysis techniques to accurately identify deteriorated locations and rebar positions. GPR exploration involves the acquisition of reflection and diffraction wave signals due to differences in radar wave propagation velocity in geotechnical media. Therefore, a full-waveform inversion (FWI) method was developed to evaluate the deterioration of reinforced concrete bridge decks by estimating the radar wave propagation velocity in geotechnical media using GPR data. Numerical experiments using a GPR velocity model confirmed the deterioration phenomena of bridge decks, such as concrete delamination and rebar corrosion, verifying the applicability of the developed technology. Moreover, using the synthetic GPR data, FWI facilitates the determination of rebar positions and concrete deterioration locations using inverted velocity images.

A Study on the Structural Deterioration of the Building' Cultural Assets in Seoul (서울지역 건조물 문화재의 구조열화성상에 관한 연구)

  • Yu, Hye-Ran;Kwon, Ki-Hyuk
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.29-32
    • /
    • 2008
  • Cultural assets are subject to general elements of deterioration due to aging of materials and surrounding conditions over time and these elements do not influence structural safety. However, wood cracking(penetrative), disparity of joints, deformation of structure, damage by insects and ground subsidence as the elements of structural deterioration as well as slanting of building structure caused by composite elements exert serious impact on safety of cultural assets. Therefore, repair must be administered by deciding the appropriate time and investigating the status. However, there are no grounds for making such decisions because investigative data on cultural assets have not been organized analyzed and the results of investigation have not been established as database. There is also lack of objectified bases. Therefore, this study aimed to investigate organize elements of structural deterioration with reference to cultural assets of building structures in Seoul so that to use the results found as the basic data for preservation of cultural assets.

  • PDF

Estimation of Deterioration and Weighting Factors in Pipes of Water Supply Systems (상수관로의 노후도 영향인자 및 가중치 산정에 관한 연구)

  • Kim, Eung-Seok;Kim, Joong-Hoon;Lee, Hyun-Dong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.686-699
    • /
    • 2002
  • The purpose of this study is to estimate deterioration factors and weighting factors in pipe network which each local self-governments takes rehabilitation and replacement work present time. Deterioration factors in pipe network are able to effected of specific province or location related with water supply. Most of water supply pipes are laid under the ground, it is hard to quantify deterioration degree of water system. Moreover, the timing and economic limitation and insufficient information on the spot survey gives a difficulty to look over how old water supply system is. Accordingly, this study collects and analyses five data as the laying environment, visual analysis, analysis of soil contents, analysis of pipe material, and questionary survey data in water pipe of A city. The deterioration factor estimates 14 factors with excavation and experimental analysis and 9 factors without excavation and experimental analysis. Also, the weighting factors are estimated by using the multiple linear regressions and the linear programming. The estimated deterioration factor and weighting results are compared the analysis result of visual, pipe material, and soil contents with the Probabilistic Neural Network Model. Consequently, the model results of estimated 9 factors in this study and 14 factors show the 1-2% difference. The result show that the proposed model could be used to decide the deterioration condition of pipe line with real excavation and experimental analysis.

Sea Water Resistance Properties of Ground Solidification Materials for Eco Friendly SCW (친환경 SCW공법용 지반고화재 경화체의 내해수특성)

  • Jo, Jung-Kyu;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.116-117
    • /
    • 2017
  • The most important factor when designing coastal and offshore concrete structures is durability. However, concrete in marine environment is exposed to physical and chemical deterioration of seawater, which might easily lead to low quality. The purpose of the present study is to understand advantages of adding ground solidificaton materials by comparatively analyze the seawater resistance of general concrete and environmental-friendly ground solidification materials.

  • PDF