DOI QR코드

DOI QR Code

Full-waveform Inversion of Ground-penetrating Radar Data for Deterioration Assessment of Reinforced Concrete Bridge

철근 콘크리트 교량의 열화 평가를 위한 지표투과레이더 자료의 완전파형역산

  • Received : 2023.11.23
  • Accepted : 2024.01.29
  • Published : 2024.02.01

Abstract

Reinforced concrete bridge decks are the first to be damaged by vehicle loads and rain infiltration. Concrete deterioration primarily occurs owing to the corrosion of rebars and other metal components by chlorides used for snow and ice melting. The structural condition and concrete deterioration of the bridge decks within the pavement were evaluated using ground-penetrating radar (GPR) survey data. To evaluate concrete deterioration in bridges, it is necessary to develop GPR data analysis techniques to accurately identify deteriorated locations and rebar positions. GPR exploration involves the acquisition of reflection and diffraction wave signals due to differences in radar wave propagation velocity in geotechnical media. Therefore, a full-waveform inversion (FWI) method was developed to evaluate the deterioration of reinforced concrete bridge decks by estimating the radar wave propagation velocity in geotechnical media using GPR data. Numerical experiments using a GPR velocity model confirmed the deterioration phenomena of bridge decks, such as concrete delamination and rebar corrosion, verifying the applicability of the developed technology. Moreover, using the synthetic GPR data, FWI facilitates the determination of rebar positions and concrete deterioration locations using inverted velocity images.

철근 콘크리트 교량 바닥판은 차량 하중과 우수침투 등으로 가장 먼저 손상이 발생하며 제설염화물 등으로 인한 철근 및 기타 금속 부재가 부식되면서 콘크리트 열화가 주로 발생한다. 교량 바닥판의 시공 상태 및 포장 내부 바닥판의 열화는 지표투과레이더(ground-penetrating radar, GPR) 탐사 자료를 이용하여 평가하고 있다. 교량의 콘크리트 열화 상태를 평가하기 위해서는 철근의 위치 및 열화 지점을 정확하게 파악하기 위한 GPR 자료 해석 기술 개발이 필요하다. GPR 탐사에서는 지반 매질의 레이더파 전파 속도 차이에 의한 반사 및 회절파 신호를 취득한다. 그러므로 이 연구에서는 GPR 탐사 자료를 이용해서 지반 매질의 레이더파 전파 속도를 추정하고 교량 바닥판의 열화를 평가하기 위한 완전파형역산(full-waveform inversion, FWI) 기술을 개발하였다. 개발된 FWI 기술의 적용성은 콘크리트 박리 및 철근 부식과 같은 교량 바닥판 열화현상을 보여주는 GPR 속도 모델을 만들어서 수치 실험을 수행하여 검증하였다. 합성 GPR 자료로 역산한 결과 교량 바닥판의 철근 위치와 열화 지점을 역산으로 계산된 속도 영상으로 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 문화재청 및 국립문화재연구원의 2024년도 '문화유산 스마트 보존·활용 기술 개발' 사업으로 수행되었으며(과제명: 문화재조사용 스마트 탐사장비 개발, 과제번호: 2024A01D09-001-1, 기여율: 70%), 2023년도 정부재원(과학기술정보통신부 여성과학기술인 R&D 경력복귀 지원사업)으로 한국여성과학기술인육성재단의 지원을 받아 연구되었습니다. 유익한 논평과 조언을 해주신 익명의 심사위원과 편집위원께 감사드립니다.

References

  1. 민동주, 편석준, 하완수, 곽상민, 정우근, 신창수 (2016), 지구물리 수치해석, 씨아이알, pp. 181~183.
  2. Abouhamad, M., Dawood, T., Jabri, A., Alsharqawi, M. and Zayed, T. (2017), Corrosiveness mapping of bridge decks using image-based analysis of GPR data, Automation in Construction, Vol. 80, pp. 104~117. https://doi.org/10.1016/j.autcon.2017.03.004
  3. Dinh, K., Zayed, T., Romero, F. and Tarussov, A. (2015), Method for analyzing time-series GPR data of concrete bridge decks, Journal of Bridge Engineering, Vol. 20, No. 6, 04014086-1~8. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000679
  4. Ernst, J. R., Maurer, H. R., Green, A. G. and Holliger, K. (2007), Full-waveform inversion of cross hole radar data based on 2-D finite difference time domain solutions of Maxwell's equations, IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 9, pp. 2807~2828. https://doi.org/10.1109/TGRS.2007.901048
  5. Huh, J., Mac, V. H., Tran, Q. H., Lee, K-Y, Lee, J-I and Kang, C. (2018), Detectability of delamination in concrete structure using active infrared thermography in terms of signal-to-noise ratio, Applied Sciences, Vol. 8, No. 10, pp. 1986-1~19.
  6. Jazayeri, S., Klotzsche, A. and Kruse, S. (2018), Improving estimates of buried pipe diameter and infilling material from ground-penetrating radar profiles with full-waveform inversion. Geophysics, Vol. 83, No. 4, pp. H27~H41. https://doi.org/10.1190/geo2017-0617.1
  7. Jeong, J. D., Lee, J. H. and Shin, D. H. (2020), A study of deterioration assessment method on concrete overlayed bridge deck using GPR, No. 2020-68-534.9607, Korea Expressway Corporation Research Institute. pp. 2~3 (In Korean).
  8. Jeong, J., Lee, J. and Choi, J. (2021), A deterioration assessment method on concrete overlayed bridge deck using GPR, Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 25, No. 2, pp. 8~18 (In Korean).
  9. Kalogeropoulos, A., Van der Kruk, J., Hugenschmidt, J., Busch, S. and Merz, K. (2011), Chlorides and moisture assessment in concrete by GPR full waveform inversion, Near Surface Geophysics, Vol. 9, No. 3, pp. 277~286.
  10. Klotzsche, A., van der Kruk, J., Meles, G. A., Doetsch, J. A., Maurer, H. and Linde, N. (2010), Full-waveform inversion of cross-hole ground-penetrating radar data to characterize a gravel aquifer close to the Thur river, Switzerland, Near Surface Geophysics., Vol. 8, No. 6, pp. 635~649. https://doi.org/10.3997/1873-0604.2010054
  11. Kuroda, S., Takeuchi, M. and Kim, H. J. (2007), Full-waveform inversion algorithm for interpreting crosshole radar data: A theoretical approach, Geosciences Journal, Vol. 11, No. 3, pp. 211~217. https://doi.org/10.1007/BF02913934
  12. Lee, I. K., Kim, W., Kang, H. and Seo, J. (2015), Analysis and prediction of highway bridge deck slab deterioration, Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 19, No. 2, pp. 68~75 (In Korean). https://doi.org/10.11112/jksmi.2015.19.2.068
  13. Mac, V. H., Tran, Q. H., Huh, J., Doan, N. S., Kang, C. and Han, D. (2019). Detection of delamination with various width-to-depth ratios in concrete bridge deck using passive IRT: limits and applicability, Materials, Vol. 12, No. 23, pp. 3996-1~23. https://doi.org/10.3390/ma12233996
  14. Minet, J., Lambot, S., Slob, E. C. and Vanclooster, M. (2010), Soil surface water content estimation by full-waveform GPR signal inversion in the presence of thin layers, IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 3, pp. 1138~1150. https://doi.org/10.1109/TGRS.2009.2031907
  15. Park, J. H., Lee, S. S., Kim, J., Park, C. and Lee, D. H. (2011), The prediction of remaining life of concrete bridge decks using the reliability analysis, International Journal of Highway Engineering, Korea Society of Road Engineers, Vol. 13, No. 4, pp. 71~79 (In Korean). https://doi.org/10.7855/IJHE.2011.13.4.071
  16. Pashoutani, S. and Zhu, J. (2020), Ground penetrating radar data processing for concrete bridge deck evaluation, Journal of Bridge Engineering, Vol. 25, No.7, pp. 04020030-1~11.
  17. Pratt, R. G., Shin, C. and Hicks, G. J. (1998), Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophysical Journal International, Vol. 133, No. 2, pp. 341~362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
  18. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P . (1992), Numerical recipes in Fortran: The art of scientific computing, 2nd edition, Cambridge University Press, pp. 414~415.
  19. Reynolds, J. M. (2014), An introduction to applied and environmental geophysics, 2nd edition. Sigma Press, pp. 584~585 (Korean language edition).
  20. Rhee, J., Choi, J., Kim, H., Park, K. and Choi, M. (2016), A Study on the Integrity Assessment of Bare Concrete Bridge Deck based on the Attenuation of Radar Signals, Journal of The Korea Institute for Structural Maintenance and Inspection, Vol. 20, No. 4, pp. 84~93 (In Korean). https://doi.org/10.11112/jksmi.2016.20.4.084
  21. Shin, C., Jang, S. H. and Min, D. J. (2001), Improved amplitude preservation for prestack depth migration by inverse scattering theory, Geophysical Prospecting, Vol. 49, No. 5, pp. 592~606. https://doi.org/10.1046/j.1365-2478.2001.00279.x
  22. Shin, C., Pyun, S. and Bednar, J. B. (2007), Comparison of waveform inversion, part 1: conventional wavefield vs logarithmic wavefield. Geophysical Prospecting, Vol. 55, No. 4, pp. 449~464. https://doi.org/10.1111/j.1365-2478.2007.00617.x
  23. Tarantola, A. (1984), Inversion of seismic reflection data in the acoustic approximation, Geophysics, Vol. 49, No. 8, pp. 1259~1266. https://doi.org/10.1190/1.1441754