• 제목/요약/키워드: Grid current quality

검색결과 139건 처리시간 0.03초

연료전지용 계통연계형 전력변환기의 전력품질개선제어 (Improvement Control of Power Quality of Grid-Tied PCS for Fuel Cell System)

  • 이정민;정상민;서인영;한세희;목형수;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.77-79
    • /
    • 2007
  • The phase angle of the utility voltage is used in current control of grid-tied fuel cell power converter. Therefore if the detection of phase angle is a problem, Current control is affected by the distorted phase angle. This paper presents a problem of synchronous reference frame PLL algorithm for single-phase systems and proposes compensated synchronous reference frame PLL algorithm. The proposed method helps power quality improvement of grid-tied fuel cell power converter under distorted utility conditions. Simulation and experimental results are presented to demonstrate the validity of the proposed method.

  • PDF

전기 자동차 배터리 충전장치용 3상 3스위치 전류형 정류기의 전류 왜곡 감소를 위한 펄스 폭 변조 스위칭 기법 (Reduced Current Distortion of Three-Phase Three-Switch Buck-Type Rectifier using Carrier Based PWM in EV Traction Battery Charging Systems)

  • 채범석;강태원;강다현;서용석
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.375-387
    • /
    • 2015
  • This study investigates an economic and highly efficient power-converter topology and its modulation scheme for 60 kW rapid EV charger system. The target system is a three-phase three-switch buck-type rectifier topology. A new carrier-based PWM scheme, which is characterized by simple implementation using logic gates, is introduced in this paper. This PWM scheme replaces the diode rectifier equivalent switching state with an active switching state to produce the same effective current flowing path. As a result, the distortion of input current during the polarity reversal of capacitor line voltage can be mitigated. The proposed modulation technique is confirmed through simulation verification. The proposed modulation technique and its implementation scheme can expand the operation range of the three-phase three-switch buck-type rectifier with high-quality AC input and capacitor ripple current.

Observer-Based FL-SMC Active Damping for Back-to-Back PWM Converter with LCL Grid Filter

  • Gwon, Jin-Su;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.200-207
    • /
    • 2015
  • This paper proposes an active damping control method for a grid-side converter that has an LCL grid filter in the back-to-back converter. To remove the resonant frequency components produced by the LCL filter, it is necessary to measure the grid current. To do this, sensors must be added. However, it is not necessary to add sensors because the grid current is estimated by designing a suboptimal observer. In order to remove the nonlinearity and to gain fast response of control, both feedback linearization and sliding mode control are applied. The proposed method is verified through a simulation.

Robust control of grid-connected inverter systems using neural networks

  • Huh, Sung-Hoe;Ko, Moon-Ju;Park, Gui-Tae;Choy, Ick
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1371-1373
    • /
    • 2005
  • Recently, preparing the problems in connection with energy and environment, grid-connected power systems have been intensively researched in the world. In general, the output power of grid-connected inverter (GCI) contains noisy components of inverter switching frequency. Moreover, pre-existing grid voltage disturbances degrade the output power quality. The objective of this paper is to make a GCI output high quality power. A robust current control scheme using neural network is presented in thispaper. To show the feasibility of the proposed scheme, some simulation results are provided.

  • PDF

Droop Control Scheme of a Three-phase Inverter for Grid Voltage Unbalance Compensation

  • Liu, Hongpeng;Zhou, Jiajie;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1245-1254
    • /
    • 2018
  • The stability of a grid-connected system (GCS) has become a critical issue with the increasing utilization of renewable energy sources. Under grid faults, however, a grid-connected inverter cannot work efficiently by using only the traditional droop control. In addition, the unbalance factor of voltage/current at the common coupling point (PCC) may increase significantly. To ensure the stable operation of a GCS under grid faults, the capability to compensate for grid imbalance should be integrated. To solve the aforementioned problem, an improved voltage-type grid-connected control strategy is proposed in this study. A negative sequence conductance compensation loop based on a positive sequence power droop control is added to maintain PCC voltage balance and reduce grid current imbalance, thereby meeting PCC power quality requirements. Moreover, a stable analysis is presented based on the small signal model. Simulation and experimental results verify the aforementioned expectations, and consequently, the effectiveness of the proposed control scheme.

단상 계통연계형 인버터의 SRF-PLL 옵셋 오차로 인한 전류 맥동 저감에 관한 연구 (A Study on Current Ripple Reduction Due to Offset Error in SRF-PLL for Single-phase Grid-connected Inverters)

  • 황선환;황영기;권순걸
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.68-76
    • /
    • 2014
  • This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.

Stability Analysis and Improvement of the Capacitor Current Active Damping of the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1565-1577
    • /
    • 2016
  • For grid-connected LCL-filtered inverters, dual-loop current control with an inner-loop active damping (AD) based on capacitor current feedback is generally used for the sake of current quality. However, existing studies on capacitor current feedback AD with a control delay do not reveal the mathematical relation among the dual-loop stability, capacitor current feedback factor, delay time and LCL parameters. The robustness was not investigated through mathematical derivations. Thus, this paper aims to provide a systematic study of dual-loop current control in a digitally-controlled inverter. At first, the stable region of the inner-loop AD is derived. Then, the dual-loop stability and robustness are analyzed by mathematical derivations when the inner-loop AD is stable and unstable. Robust design principles for the inner-loop AD feedback factor and the outer-loop current controller are derived. Most importantly, ensuring the stability of the inner-loop AD is critical for achieving high robustness against a large grid impedance. Then, several improved approaches are proposed and synthesized. The limitations and benefits of all of the approaches are identified to help engineers apply capacitor current feedback AD in practice.

단상 계통연계 인버터를 위한 개선된 고조파 보상법 (An Improved Harmonic Compensation Method for a Single-Phase Grid Connected Inverter)

  • 칸 레이안;최우진
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.215-227
    • /
    • 2019
  • Grid-connected inverters should satisfy a certain level of total harmonic distortion (THD) to meet harmonics standards, such as IEEE 519 and P1547. The output quality of an inverter is typically degraded due to grid voltage harmonics, dead time effects, and the device's turn-on/turn-off delay, which all contribute to increasing the THD value of the output. The use of a harmonic controller is essential to meet the required THD value for inverter output under a distorted grid condition. In this study, an improved feedforward harmonic compensation method is proposed to effectively eliminate low-order harmonics in the inverter current to the grid. In the proposed method, harmonic components are directly compensated through feedforward terms generated by the proportional resonant controller with the grid current in a stationary frame. The proposed method is simple to implement but powerful in eliminating harmonics from the output. The effectiveness of the proposed method is verified through simulation using PSIM software and experiments with a 5 kW single-phase grid-connected inverter.

UPS를 고려한 계통연계 전류제어형 전압원 인버터 (Gird-interactive Current Controlled Voltage Source Inverter System with UPS)

  • 고성훈;임성훈;이수원;이성룡
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1064-1070
    • /
    • 2007
  • This paper presents a grid-interactive current controlled voltage source inverter (CCVSI) with uniterruptible power supply (UPS), which uses an inner current control loop (polarized ramp time (PRT)) and outer feedback control loops to improve grid power quality and UPS. To reduce the complexity, cost and number of power conversions, which results in higher efficiency, a single stage CCVSI is used. The operation of this system could be divided into the power quality control (PQC) state mode and the UPS state mode. In PQC mode, the system operated to compensate the reactive power demand by nonlinear load or variation in load. In UPS mode. the system is controlled to provide a sinusoidal voltage at the rated value for the load when the gird fail. To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results for 1KVA load capacity is presented.

Slip-Mode Frequency Shift 단독운전 검출 기법의 정상상태 전력 품질 개선 (Design of Modified Slip-Mode Frequency Shift Islanding Detection Method for Power Quality Improvement)

  • 김동욱;김성민
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.539-547
    • /
    • 2018
  • 계통 연계형 인버터는 단독운전 조건에서 반드시 전력 공급을 차단해야 한다. 이러한 이유로 분산 발전 시스템은 단독운전을 검출 기능을 반드시 가지고 있어야 한다. 분산 발전용 인버터에 적용되는 일반적인 방법 중에는 Slip-Mode frequency Shift (SMS) 단독운전 검출 기법이 있다. SMS 기법은 계통 전압의 주파수에 따라 무효 전력을 공급하여 단독운전 조건에서 계통 주파수를 허용 범위 밖으로 이동시키는 방법이다. SMS 기법은 안정적으로 단독운전을 검출할 수 있으며, 계통 전류에 고주파를 인가하지 않는다는 장점이 있으나, 무효 전류를 인가하기 때문에 계통 역률이 나빠져서 전력 품질의 저하를 가져온다. 본 논문에서는 계통 전원이 연결되어 있는 정상 조건에서 전력 품질 저하가 없는 수정된 SMS 기법을 제안한다. 600W 단상 인버터 실험을 통해 제안된 방법의 유효성을 검증한다.