• Title/Summary/Keyword: Greenhouse Gas Mitigation

Search Result 125, Processing Time 0.028 seconds

Methane Mitigation Technology Using Methanotrophs: A Review (Methanotrophs을 이용한 메탄 저감 기술 최신 동향)

  • Cho, Kyung-Suk;Jung, Hyekyeng
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.185-199
    • /
    • 2017
  • Methane, which is emitted from natural and anthropogenic sources, is a representative greenhouse gas for global warming. Methanotrophs are widespread in the environment and play an important role in the biological oxidation of methane via methane monooxygenases (MMOs), key enzymes for methane oxidation with broad substrate specificity. Methanotrophs have attracted attention as multifunctional bacteria with promising applications in biological methane mitigation technology and environmental bioremediation. In this review, we have summarized current knowledge regarding the biodiversity of methanotrophs, catalytic properties of MMOs, and high-cell density cultivation technology. In addition, we have reviewed the recent advances in biological methane mitigation technologies using methanotrophs in field-scale systems as well as in lab-scale bioreactors. We have also surveyed information on the dynamics of the methanotrophic community in biological systems and discussed the various challenges pertaining to methanotroph-related biotechnological innovation, such as identification of suitable methanotrophic strains with better and/or novel metabolic activity, development of high-cell density mass cultivation technology, and the microbial consortium (methanotrophs and non-methanotrophs consortium) design and control technology.

Characterization of a Nitrous Oxide-reducing Bacterial Consortium (아산화질소 환원 세균 컨소시움의 특성)

  • Park, Hyung-Joo;Kwon, Ji-Hyeon;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.630-638
    • /
    • 2019
  • Nitrous oxide (N2O) is a greenhouse gas with a global warming potential 310 times higher than that of carbon dioxide. In this study, an N2O-reducing consortium was obtained by enrichment culture using advanced treatment sludge as the inoculum. The dominant bacteria in the consortium were Sulfurovum (17.95%), Geobacter (14.63%), Rectinema (11.45%), and Chlorobium (8.24%). The consortium displayed optimal N2O reducing activity when acetate was supplied as the carbon source at a carbon/nitrogen ratio (mol·mol-1) of 6.3. The N2O reduction rate increased with increasing N2O concentration at less than 3,000 ppm. Kinetic analysis revealed that the maximum N2O reduction rate of the consortium was 163.9 ㎍-N·g-VSS-1·h-1. Genes present in the consortium included nosZ (reduction of nitrous oxide to N2), narG (reduction of nitrate to nitrite), nirK (reduction of nitrite to nitric oxide), and norB (reduction of nitric oxide to nitrous oxide). These results indicate that the N2O-reducing consortium is a promising bioresource that can be used in denitrification and N2O mitigation.

Estimating of the Greenhouse Gas Mitigation and Function of Water Resources Conservation through Conservation of Surface Soils Erosion and Policy Suggestion (표토유실 보전을 통한 온실가스배출 저감과 수자원 보전 기능의 산출 및 정책제안)

  • Oh, Seung-Min;Kim, Hyuck Soo;Lee, Sang-Pil;Lee, Jong Geon;Jeong, Seok Soon;Lim, Kyung Jae;Kim, Sung-Chul;Park, Youn Shik;Lee, Giha;Hwang, Sang-Il;Yang, Jae-E
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.74-84
    • /
    • 2017
  • Soil erosion is often extreme in Korea due to high rainfall intensities and steep slopes, and climate change has also increased the risk of erosion. Despite its significane, erosion-induced soil organic carbon (SOC) emission and water resource loss are not well understood, along with the lack of an integrated surface soil erosion protection policy. Therefore, to design adequate protection policies, land users, scientists, engineers and decision makers need proper information about surface soil and watershed properties related to greenhouse gas emission potential and water conservation capability, respectively. Assuming the total soil erosion of $346Tg\;yr^{-1}$, soil organic matter (SOM) content of 2% (58% of SOM is SOC), and mineralization rate of 20% of the displaced carbon, erosion-induced carbon emission could reach $800Gg\;C\;yr^{-1}$. Also the available water capacity of the soil was estimated to be 15.8 billion tons, which was 14 times higher than the yearly water supply demand in Seoul, Korea. Therefore, in order to prevent of soil erosion, this study proposes a three-stage plan for surface soil erosion prevention: 1) classification of soil erosion risk and scoring of surface soil quality, 2) selection of priority areas for conservation and best management practices (BMP), and 3) application of BMP and post management.

Estimation of Greenhouse Gas Emissions from Korean Livestock During the Period 1990~2013 (1990년부터 2013년까지 우리나라 축산부문 온실가스 배출량 평가)

  • Kim, Minseok;Yang, Seung-Hak;Oh, Young Kyoon;Park, Kyu-Hyun
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.383-390
    • /
    • 2016
  • According to the "Framework Act on Low Carbon, Green Growth", publication of annual national greenhouse gas (GHG) inventory report is mandatory. This annual GHG inventory report is used as basal data for GHG mitigation strategies. In the livestock sector, GHG emission trends from year 1990 to 2013 were estimated based on the 1996 IPCC guidelines with the Tier 1 methodology. GHG emissions from the livestock sector in 2013 were 9.9 million tons $CO_2-eq$., where emissions from enteric fermentation were 4.4 million tons $CO_2-eq$, increased by 47.4% over 1990 mainly due to the increase in non-dairy cattle population. On the other hand, GHG emissions from livestock manure in 2013 were 5.5 million tons $CO_2-eq$, increased by 75.5% over 1990 mainly due to the increase in non-dairy cattle, swine and poultry populations. Additional research is required to develop country-specific emission factors to estimate GHG emissions precisely from livestock in South Korea.

Development of the Performance Indicator for the Mitigation of Greenhouse Gas Emissions from Products - Estimation of Social Cost for Global Warming Impact using the Conjoint Analysis - (제품의 온실가스 배출저감에 대한 성과지표 개발 - 컨조인트 분석(conjoint analysis)을 이용한 지구온난화 영향의 사회적 비용 추정 -)

  • Jeong, In-Tae;Lee, Kun-Mo;Song, Jong-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1245-1254
    • /
    • 2008
  • Proposing a method for the estimation of the social cost for global warming impact (external cost) is the aim of this paper. Both the endpoint approach and conjoint analysis were applied to estimating the social cost for global warming. The endpoint approach was used to assess the damage on the safeguard subjects by global warming due to the emission of greenhouse gases into the atmosphere. The conjoint analysis was used to estimate the economic values for safeguard subjects which measure the social preferences and willingness to pay (WTP) on safeguard subjects. The economic values of human health and social asset were estimated at 62,261,700 Won / DALY (yr) and 10,000 Won / 10,000 Won, respectively. Moreover, cost factors of GHGs were calculated by multiplying the damage factor which is quantified the unit damage on safeguard subject and the economic value. In the case of CO$_2$, the cost factor was calculated at 13.52 Won / kg (13,520 Won / ton). External cost of products or services can be calculated by multiplying the GHG inventory result of products or services by the cost factor of each GHG. inventory.

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

Mitigation of Greenhouse Gases by Water Management of SRI (System of Rice Intensification) in Rice Paddy Fields (논에서 SRI (System of Rice Intensification) 물 관리 방법을 적용한 온실가스 저감 효과)

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung;Ryu, Jong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1173-1178
    • /
    • 2012
  • Water competition among domestic, industrial and agricultural sectors has been gradually heightened recently in Korea as the lack of water supply is expected in the near future. About 46% of nation's water use is consumed in paddy farming to produce rice. And the conservation of water resource and quality in agricultural sector is a pending issue in the nation's long term water management plan. New paddy rice farming techniques that use significantly less irrigation water are urgently required. System of Rice Intensification (SRI) that is now well known to produce more rice with less water consumption has not been tried in Korea yet. And environmental effect of SRI on greenhouse gases (GHGs) has not been well investigated. The objective of this study was to measure the effect of SRI on GHGs as well as water use and rice yield in a Korean paddy condition. Three experimental runoff plots $5{\times}15m$ in size were prepared at an existing paddy field. Runoff, GHGs emission and water quality were measured during the 2011 growing seasons while a Japonica rice variety was cultivated. Rice plants grew better and healthier in SRI plots than in continuously flooded (CF) and intermittently drained (ID) plots. Rice yield from SRI plots increased 112.8 (ID)~116.1 (CF)% compared with CF and ID plots. Irrigation requirement of SRI plots compared to CF plot reduced by 52.6% and ID plot reduced by 62.0%, meaning that about 37.9~47.4% of irrigation water could be saved. GHGs emission from SRI plots reduced by 71.8% compared to that from CF plot and by 18.4% compared to that from ID plot, meaning that SRI could help contribute to ease the greenhouse gas accumulation in the atmosphere. It was believed that SRI is a promising paddy farming technique that could increase rice yield, and reduce irrigation water requirement and GHGs emission not just in Korea but also other rice farming countries all over the world. However, it was recommended that long term studies under different conditions including rice variety, soil texture, water source, climate need to be conducted for reliable data for the development of environmental policies related to GHGs emission control and management.

Trends in Reports on Climate Change in 2009-2011 in the Korean Press Based on Daily Newspapers' Ownership Structure

  • Lee, Jihye;Hong, Yeon-Pyo;Kim, Hyunsook;Hong, Youngtak;Lee, Weonyoung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.46 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • Objectives: The mass media play a crucial role in risk communication regarding climate change. The aim of this study was to investigate the trend in journalistic reports on climate change in the daily newspapers of Korea. Methods: We selected 9 daily newspapers in Korea, which according to the ABC Association, represented 77% of newspaper circulation, out of a total of 44 Korean daily newspapers. The collected articles were from 2009 to 2011. All of the articles were sorted into the following 8 categories: greenhouse gas, climate change conventions, sea level rise, Intergovernmental Panel on Climate Change synthesis reports, expected damage and effect, use of fossil fuels, global warming, and mitigation or adaptation. A chi-squared test was done on the articles, which were counted and classified into cause, effect, and measurement of climate change according to the newspaper's majority or minority ownership structure. Results: From the 9 selected newspapers, the number of articles on climate change by month was greatest in December 2009. Generally, the articles vague about climate change (lack of precise data, negative or skeptical tone, and improper use of terminology) were much more common than the articles presenting accurate knowledge. A statistical difference was found based on ownership structure: the majority-owned newspapers addressed the cause of climate change, while the minority-owned newspapers referred more to climate change measurement. Conclusions: Our investigation revealed that generally Korean daily newspapers did not deliver accurate information about climate change. The coverage of the newspapers showed significant differences according to the ownership structure.

Sustaining Low-Carbon Emission Development: An Energy Efficient Transportation Plan for CPEC

  • Zubedi, Asma;Jianqiu, Zeng;Arain, Qasim Ali;Memon, Imran;Khan, Sehrish;Khan, Muhammad Saad;Zhang, Ying
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.322-345
    • /
    • 2018
  • Climate change has become a major challenge for sustainable development of human society. This study is an attempt to analyze existing literature to identify economic indicators that hamper the process of global warming. This paper includes case studies based on various countries to examine the nexus for environment and its relationship with Foreign Direct Investment, transportation, economic growth and energy consumption. Furthermore, the observations are analyzed from the perspective of China-Pakistan Economic Corridor (CPEC) and probable impact on carbon emission of Pakistan. A major portion of CPEC investment is allocated for transportation. However, it is evident that transportation sector is substantial emitter of carbon dioxide (CO2) gas. Unfortunately, there is no empirical work on the subject of CPEC and carbon emission for vehicular transportation. This paper infers that empirical results from various other countries are ambiguous and inconclusive. Moreover, the evidence for the pollution haven hypothesis and the halo effect hypothesis is limited in general and inapplicable for CPEC in particular. The major contribution of this study is the proposal of an energy efficient transportation model for reducing CO2 emission. In the end, the paper suggests strategies to climate researchers and policymakers for adaptation and mitigation of greenhouse gases (GHG).

Effects of cultivation methods on methane emission in rice paddy

  • Kim, Sukjin;Choi, Jong-Seo;Kang, Shin-gu;Park, Jeong-wha;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.319-319
    • /
    • 2017
  • Methane is the main greenhouse gas released from rice paddy field. Methane from paddy fields accounts for 11 % of the global total methane emission. The global warming potential (GWP) of methane is 25 times more than that of carbon dioxide on a mass basis. It is well known that most effective practice to mitigate methane in paddy is related to the water management during rice growing season and the use of organic matters. This study was conducted to investigate the effects of tillage and cultivation method on methane emission in paddy. Tillage (tillage and no-tillage) and cultivation methods (transplanting and direct seeding) were combined tillage-transplanting (T-T), tillage-wet hill seeding (T-W), tillage-dry seeding (T-D) and no-till dry seeding (NT-D) to evaluate methane mitigation efficiency. Daily methane emission was decreased on seeding treatments (T-W, T-D, NT-D) than transplanting treatment (T-T). Amount of methane emission during rice growing season is highest in T-T ($411.7CH_4\;kg\;ha^{-1}y^{-1}$) and lowest in NT-D treatment (89.7). In T-W and T-D treatments, methane emissions were significantly decreased by 36 and 51 % respectively compared with T-T. Methane emissions were highly correlated with the dry weight of whole rice plant ($R^2=0.62{\sim}0.93$). T-T treatment showed highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that direct seeding practice in rice production could mitigate the methane emissions without loss in grain yield.

  • PDF