• Title/Summary/Keyword: Green economy

Search Result 244, Processing Time 0.021 seconds

Temporal variation in the community structure of green tide forming macroalgae(Chlorophyta; genus Ulva) on the coast of Jeju Island, Korea based on DNA barcoding (DNA 바코드를 이용한 제주도 연안 파래대발생(green tide)을 형성하는 갈파래(genus Ulva) 군집구조 및 주요 종 구성의 시간적 변이)

  • Hye Jin Park;Seo Yeon Byeon;Sang Rul Park;Hyuk Je Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.464-476
    • /
    • 2022
  • In recent years, macroalgal bloom occurs frequently in coastal oceans worldwide. It might be attributed to accelerating climate change. "Green tide" events caused by proliferation of green macroalgae (Ulva spp.) not only damage the local economy, but also harm coastal environments. These nuisance events have become common across several coastal regions of continents. In Korea, green tide incidences are readily seen throughout the year along the coastlines of Jeju Island, particularly the northeastern coast, since the 2000s. Ulva species are notorious to be difficult for morphology-based species identification due to their high degrees of phenotypic plasticity. In this study, to investigate temporal variation in Ulva community structure on Jeju Island between 2015 and 2020, chloroplast barcode tufA gene was sequenced and phylogenetically analyzed for 152 specimens from 24 sites. We found that Ulva ohnoi and Ulva pertusa known to be originated from subtropical regions were the most predominant all year round, suggesting that these two species contributed the most to local green tides in this region. While U. pertusa was relatively stable in frequency during 2015 to 2020, U. ohnoi increased 16% in frequency in 2020 (36.84%), which might be associated with rising sea surface temperature from which U. ohnoi could benefit. Two species (Ulva flexuosa, Ulva procera) of origins of Europe should be continuously monitored. The findings of this study provide valuable information and molecular genetic data of genus Ulva occurring in southern coasts of Korea, which will help mitigate negative influences of green tide events on Korea coast.

A Fundamental Study for Design of Electric Energy Harvesting Device using PZT on the Road (도로용 압전발전체 시험모듈 설계를 위한 기초 실험 연구)

  • Lee, Jae-Jun;Ryu, Seung-Ki;Moon, Hak-Yong;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.159-166
    • /
    • 2011
  • Green house gas emissions are increasing as development of the industrial economy of the international community. Many countries in the world are endeavoring to reduce green house gas emissions under severe climate change. In order to protect grobal warming, government is trying to reduce green gas emissions under "Low Carbon Green Growth Policy" and investing climiate-firendly industries such as renewable energy harvesting. Renewable energy has been rapidly developing as a result of investment for development technology of using natural energy such as solar, wind, tidal, etc. There are lots of waste energy in the road space. However, nobody is not interested in waste energy from the road space. This paper present a fundamentally experimental study of energy harvesting technique to use waste energy in the road. The waste energy in the road is covered a pressure and impact of vehicles on the road, the radiant heat from asphalt pavement, road noise and vibration etc. In this study, an energy harvesting device using piezoelectric element is proposed and various tests are conducted to investigate a characteristic of this device as function of impact loading based on piezoelectric effect behavior. This paper shows the energy harvesting results of the device using domestic piezoelectirc element as a function of impact load size and pavement types.

Ionomer Binder in Catalyst Layer for Polymer Electrolyte Membrane Fuel Cell and Water Electrolysis: An Updated Review (고분자 전해질 연료전지 및 수전해용 촉매층의 이오노머 바인더)

  • Park, Jong-Hyeok;Akter, Mahamuda;Kim, Beom-Seok;Jeong, Dahye;Lee, Minyoung;Shin, Jiyun;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.174-183
    • /
    • 2022
  • Polymer electrolyte fuel cells and water electrolysis are attracting attention in terms of high energy density and high purity hydrogen production. The catalyst layer for the polymer electrolyte fuel cell and water electrolysis is a porous electrode composed of a precious metal-based electrocatalyst and an ionomer binder. Among them, the ionomer binder plays an important role in the formation of a three-dimensional network for ion conduction in the catalyst layer and the formation of pores for the movement of materials required or generated for the electrode reaction. In terms of the use of commercial perfluorinated ionomers, the content of the ionomer, the physical properties of the ionomer, and the type of the dispersing solvent system greatly determine the performance and durability of the catalyst layer. Until now, many studies have been reported on the method of using an ionomer for the catalyst layer for polymer electrolyte fuel cells. This review summarizes the research results on the use of ionomer binders in the fuel cell aspect reported so far, and aims to provide useful information for the research on the ionomer binder for the catalyst layer, which is one of the key elements of polymer electrolyte water electrolysis to accelerate the hydrogen economy era.

Advancements in High-Efficiency Ammonia Synthesis Technology: A Key Solution for Green Hydrogen Storage in the Carbon-Neutral Era (청정 수소 저장을 위한 고효율, 저탄소 배출 암모니아 합성기술 동향)

  • Weonjun Jeong;Jintae Kim;Kanghee Cho
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.71-93
    • /
    • 2024
  • Recently, the establishment of a hydrogen-based economy and the utilization of low-carbon energy sources, particularly for shipping and power generation, have been in high demand in order to achieve carbon neutrality by 2050. In particular, ammonia is gaining renewed attention because it is capable of serving as a key facilitator for high-efficiency green hydrogen storage and transportation and it is also capable of serving as a low-carbon energy source. Although ammonia can be synthesized through the Haber-Bosch process, the high energy consumption and carbon emissions associated with this process result in minimal carbon reduction. To address the critical drawbacks of the traditional Haber-Bosch process, various thermochemical synthesis methods have been developed recently, allowing for the synthesis of ammonia with lower carbon emissions and a higher energy efficiency. Research is also progressing in the development of high-performance catalyst materials that are capable of demonstrating sufficient ammonia synthesis performance under milder process conditions compared to conventional methods. Additionally, a variety of different processes such as chemical-looping ammonia synthesis, plasma synthesis, and mechanochemical synthesis are being applied diversely. This review aims to provide a detailed overview of the emerging ammonia synthesis technologies that have been developed to effectively store green hydrogen for future applications.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Methods to Reduce Conflicts on Energy Transition to Hydro Energy: Focused on the Application of Design Thinking (수소에너지의 에너지전환 활용을 둘러싼 갈등해결 방안: 디자인씽킹 방법론 적용을 중심으로)

  • Kim, Taeyoon;Choi, Hanna;Kim, Minchul
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.30-39
    • /
    • 2020
  • The purpose of this paper is to present a solution to the conflict when hydrogen energy is used for national energy transition through design thinking methodology. Research shows that design thinking enables joint design of policies for hydrogen energy transition between government and stakeholders. This is a macro approach based on empathy and cooperation, and can form consensus on the policy design process in the early stages. Starting with an understanding of hydrogen energy conflicts, ideas can be found based on the experiences gained from conflicts of stakeholders, disputes or lawsuits. And based on this, additional ideas on hydrogen energy transition will be verified the realization of the ideas. Collaboration with stakeholders to improve conflicts can create new values. In the process of reconfiguring the definition of energy transition problems, the opinions of stakeholders can be integrated with continuous empathy. Through design thinking methodology, we can integrate opinions of stakeholders and prevent conflicts.

Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber (고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술)

  • Lee, Bum-Jae;Lim, Ki-Won;Ji, Sang-Chul;Jung, Kwon-Young;Kim, Tae-Jung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.232-243
    • /
    • 2009
  • The specialized and diversified synthetic and compounding technologies are used to meet the requirements for the advanced high performance tire tread materials with better balance of fuel economy(rolling resistance), safety(wet traction) and wear resistance. These techniques involve the methodology for the improvement of chemical and physical interaction between filler and the rubber matrix using coupling agents as well as a variety of chemically-modified solution SBRs. The research trends about the high performance functional SBRs and coupling agents which can interact with the surface of fillers and their working mechanism were investigated in the conventional carbon black-filled rubber and silica-filled SBR systems developed recently as "green tire".

Analysis of Levelized Cost of Hydrogen and Financial Performance Risk by CCU System (CCU 시스템을 통한 균등화 수소원가 및 재무적 위험도 분석)

  • MINHEE SON;HEUNGKOO LEE;KYUNG NAM KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.660-673
    • /
    • 2022
  • In achieving carbon neutrality and the hydrogen economy, the estimation of H2 cost is critical in terms of CCU technologies. This study analyzes LCOH of hydrogen produced by the carbon utilization unit with methane reforming and CO2 from thermal power plant. LCOH for H2 made with CO is estimated in three ways of Joint Cost Allocations with financial performance risk assessment. Regarding cost analysis, the zero value of LCOH is $6,003/ton. We found that the CCU technology has economic feasibility in terms of profitability. The sensitivity analysis result shows that the input ratio is more influential to the LCOH than other variables. Risk analysis presents the baseline price of zero value of LCOH - $8,408/ton, which is higher than the cost analysis - $6,003/ton. Mainly, the price variability of natural gas primarily affects the LCOH. The study has significant value in analyzing the financial performance risks as well as the cost of H2 produced by a Plasma-based CCU system.

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

The Effect of Life Style on Eco-Friendly Clothing Practices and Efficacy in Middle School Students (중학생의 라이프스타일이 친환경적인 의생활 실천 및 효능감에 미치는 영향)

  • Kim, Yunhwa
    • Journal of Korean Home Economics Education Association
    • /
    • v.27 no.4
    • /
    • pp.141-154
    • /
    • 2015
  • The world has been demanding a green growing world in order to solve serious environmental pollution and resource depletion. This study aims to identify life style factors that drive eco-friendly clothing practices and efficacy in middle school students. Data was collected from 215 middle school students in Daegu, using a self-administered questionnaire in December 2013. Statistical analyses to determine frequency, average, ANOVA, factor analysis, reliability analysis, and regression analysis were performed using SPSS 21 program. The results of factor analysis indicated that eco-friendly clothing practices were classified into purchasing and management, reuse, washing, and recycle, and eco-friendly clothing practices efficacy was sub-grouped into practice confidence, purchasing and management efficacy, and washing and sharing efficacy, and life style consisted of fashion pursuit, environment pursuit, planned purchasing, and economy. Eco-friendly clothing practices and efficacy were significant differences in sex and grade (p<0.05). Eco-friendly clothing practices were significantly affected by the factors of environment pursuit, planned purchasing, economy of life style, and the factors of practice confidence, purchasing and management efficacy, and washing and sharing efficacy of eco-friendly clothing practices efficacy (p<0.05). The planned purchasing factor of life style significantly affected all the factors of eco-friendly clothing practices efficacy. This study suggests that eco-friendly clothing practices education program could account for the life style factors such as fashion pursuit, environment pursuit, planned purchasing, and economy with gender and grade to be effective for middle school students.