Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.6.660

Analysis of Levelized Cost of Hydrogen and Financial Performance Risk by CCU System  

MINHEE SON (Graduate School of Energy and Environment (KU-KIST GREEN SCHOOL), Korea University)
HEUNGKOO LEE (Global Energy Policy Professionals Training Program, Korea University)
KYUNG NAM KIM (Graduate School of Energy and Environment (KU-KIST GREEN SCHOOL), Korea University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.6, 2022 , pp. 660-673 More about this Journal
Abstract
In achieving carbon neutrality and the hydrogen economy, the estimation of H2 cost is critical in terms of CCU technologies. This study analyzes LCOH of hydrogen produced by the carbon utilization unit with methane reforming and CO2 from thermal power plant. LCOH for H2 made with CO is estimated in three ways of Joint Cost Allocations with financial performance risk assessment. Regarding cost analysis, the zero value of LCOH is $6,003/ton. We found that the CCU technology has economic feasibility in terms of profitability. The sensitivity analysis result shows that the input ratio is more influential to the LCOH than other variables. Risk analysis presents the baseline price of zero value of LCOH - $8,408/ton, which is higher than the cost analysis - $6,003/ton. Mainly, the price variability of natural gas primarily affects the LCOH. The study has significant value in analyzing the financial performance risks as well as the cost of H2 produced by a Plasma-based CCU system.
Keywords
CCUS; Levelized cost of hydrogen; LCOH; Risk analysis; Joint cost allocation; Sensitivity analysis; Plasma;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Joint Cooperation with Related Ministries of the Republic of Korea, "Carbon dioxide capture and utilization (CCU) technology innovation roadmap (draft)", Joint Cooperation with Related Ministries of the Republic of Korea, 2021. Retrieved from https://www.korea.kr/common/download.do?fileId=195009538&tblKey=GMN.
2 Y. Qin, G. Niu, X. Wang, D. Luo, and Y. Duan, "Status of CO2 conversion using microwave plasma", Journal of CO2 Utilization, Vol. 28, 2018, pp. 283291, doi: https://doi.org/10.1016/j.jcou.2018.10.003.   DOI
3 Korea Energy Economics Institute, "Policy status and implications of major countries for water electrolysis technology advancement", Korea Energy Economics Institute, 2021. Retrieved from https://www.keei.re.kr/main.nsf/index.html?open&p=%2Fweb_keei%2Fpendingissue.nsf%2F0%2F9D058256869ABFC84925874F0022A3BA&s=%3FOpenDocument%26is_popup%3D1.
4 M. H. A. Khan, R. Daiyan, P. Neal, N. Haque, I. MacGill, and R. Amal, "A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation", Int. J. Hydrogen Energy, Vol. 46, No. 44, 2021, pp. 2268522706, doi: https://doi.org/10.1016/j.ijhydene.2021.04.104.   DOI
5 S. C. Hwang and J. N. Park, "Techno-economic analysis of water electrolysis system connected with photovoltaic power generation", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 6, 2021, pp. 477-482, doi: https://doi.org/10.7316/KHNES.2021.32.6.477.   DOI
6 H. W. Kim, Y. S. Baek, and W. Y. Won, "Techno-economic analysis and lifecycle assessment for the production of hydrogen from biogas", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 417429, doi: https://doi.org/10.7316/KHNES.2021.32.5.417.   DOI
7 J. Na, B. Seo, J. Kim, C. W. Lee, H. Lee, Y. J. Hwang, B. K. Min, D. K. Lee, H. S. Oh, and U. Lee, "General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation", Nat Commun, Vol. 10, No. 1, 2019, pp. 5193, doi: https://doi.org/10.1038/s4146701912744y.   DOI
8 S. Deevski, "Cost allocation methods for joint products and by-products", Economic Alternatives, No. 1, 2016. Retrieved from https://www.unwe.bg/uploads/Alternatives/deevski_br1_20166.pdf.
9 S. Roussanaly, N. Berghout, T. Fout, M. Garcia, S. Gardarsdottir, S. M. Nazir, A. Ramirez, and E. S. Rubin, "Towards improved cost evaluation of carbon capture and storage from industry", International Journal of Greenhouse Gas Control, Vol. 106, 2021, pp. 103263, doi: https://doi.org/10.1016/j.ijggc.2021.103263.   DOI
10 C. T. Horngren, G. Foster, S. M. Datar, M. Rajan, and C. Ittner, "Cost accounting: a managerial emphasis", Vol. 25, No. 4, 2009, pp. 789790, doi: https://doi.org/10.2308/iace.2010.25.4.789.   DOI
11 J. G. Vitillo, B. Smit, and L. Gagliardi, "Introduction: car bon capture and separation", Chem. Rev., Vol. 117, No. 14, 2017, pp. 95219523, doi: https://doi.org/10.1021/acs.chemrev.7b00403.   DOI
12 National Law Information Center, "General Guidelines for Conducting Preliminary Feasibility Study", National Law Information Center, 2019. Retrieved from https://www.law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000177914.
13 M. R. Shaner, H. A. Atwater, N. S. Lewis, and E. W. McFarland, "A comparative technoeconomic analysis of renewable hydrogen production using solar energy", Energy & Environmental Science, Vol. 9, No. 7, 2016, pp. 23542371, doi: https://doi.org/10.1039/c5ee02573g.   DOI
14 M. Jouny, W. Luc, and F. Jiao, "General techno-economic analysis of CO2 electrolysis systems", Ind. Eng. Chem. Res., Vol. 57, No. 6, 2018, pp. 2165-2177, doi: https://doi.org/10.1021/acs.iecr.7b03514.   DOI
15 Korea Energy Economics Institute, "Establishment and operation of mid-to long-term unit cost (LCOE) forecasting system to expand renewable energy supply (1/5)", Korea Electric Power Corporation, 2020. Retrieved from http://www.keei.re.kr/web_keei/d_results.nsf/0/A10FCB3438C55F4349258669004FC436/$file/%EA%B8%B0%EB%B3%B8%20202021_%EC%9E%AC%EC%83%9D%EC%97%90%EB%84%88%EC%A7%80%20%EA%B3%B5%EA%B8%89%ED%99%95%EB%8C%80%EB%A5%BC%20%EC%9C%84%ED%95%9C%20%EC%A4%91%EC%9E%A5%EA%B8%B0%20%EB%B0%9C%EC%A0%84%EB%8B%A8%EA%B0%80(LCOE)%20%EC%A0%84%EB%A7%9D%20%EC%8B%9C%EC%8A%A4%ED%85%9C%20%EA%B5%AC%EC%B6%95%20%EB%B0%8F%20%EC%9A%B4%EC%98%81.pdf.
16 International Energy Agency (IEA), "CCUS in clean energy transitions", IEA, 2020. Retrieved from https://www.iea.org/reports/ccusincleanenergytransitions.
17 Korea Exchange, "Emissions market information platform", Korea Exchange. Retrieved from https://ets.krx.co.kr/contents/ETS/03/03010000/ETS03010000.jsp.
18 Korea Gas Coporation, "Natural gas rates for power generation", Korea Gas Coporation. Retrieved from https://www.kogas.or.kr:9450/site/koGas/1040403010000.
19 Korea Electric Power Corporation, "Statistics of electric power in Korea", Korea Electric Power Corporation, 2020. Retrieved from https://home.kepco.co.kr/kepco/KO/ntcob/ntcobView.do?pageIndex=1&boardSeq=21047466&boardCd=BRD_000099&menuCd=FN05030103&parnScrpSeq=0&categoryCdGroup=®DateGroup2=.
20 J. A. White, K. S. Grasman, K. E. Case, K. L. Needy, and D.B. Pratt, "Fundamentals of engineering economic analysis (J.S. Jung, S. Seo, D. Lee translated), Textbooks, Gyeonggi do, 2017.
21 Trading Economics, "United States producer price index by commodity: chemicals and allied products: argon and hydrogen", Trading Economics. Retrieved from https://tradingeconomics.com/united-states/producer-price-index-by-commodity-for-chemicals-and-allied-prod-ucts-argon-and-hydrogen-fed-data.html.
22 Fortune Business Insights, Insights, "Global carbon monoxide market(20172022)", Fortune Business Insights. Retrieved from https://www.fortunebusinessinsights.com/.
23 B. J. Lee, J. I. Lee, S. Y. Yun, C. S. Lim, and Y. K. Park, "Economic evaluation of carbon capture and utilization applying the technology of mineral carbonation at coal-fired power plant", Sustainability, Vol. 12, No. 15, 2020, pp. 6175, doi: https://doi.org/10.3390/su12156175.   DOI
24 J. L. Fan, P. Yu, K. Li, M. Xu, and X. Zhang, "A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China", Energy, Vol. 242, 2022, pp. 123003, doi: https://doi.org/10.1016/j.energy.2021.123003.   DOI
25 J. L. Fan, M. Xu, S. Wei, S. Shen, Y. Diao, and X. Zhang, "Carbon reduction potential of China's coal-fired power plants based on a CCUS source-sink matching model", Resources Conservation and Recycling, Vol. 168, 2021, pp. 105320, doi: https://doi.org/10.1016/j.resconrec.2020.105320.   DOI
26 K. Roh, A. S. Al-Hunaidy, H. Imran, and J. H. Lee, "Optimizationbased identification of CO2 capture and utilization processing paths for life cycle greenhouse gas reduction and economic benefits", AIChE Journal, Vol. 65, No. 7, 2019, pp. e16580, doi: https://doi.org/10.1002/aic.16580.   DOI
27 Global CCS Institute (GCCSI), "Global status of CCS", GCCSI, 2021. Retrieved from https://www.globalccsinstitute. com/wp-content/uploads/2021/10/2021-Global-Status-of-CCSReport_Global_CCS_Institute.pdf.
28 K. Vreys, S. Lizin, M. Van Dael, J. Tharakan, and R. Malina, "Exploring the future of carbon capture and utilisation by combining an international Delphi study with local scenario development", Resources Conservation and Recycling, Vol. 146, 2019, pp. 484501, doi: https://doi.org/10.1016/j.resconrec.2019.01.027.   DOI
29 Trading Economics, "Natural gas", Trading Economics. Retrieved from https://tradingeconomics.com/commodity/natural-gas.
30 Trading Economics, "United States producer price index by industry: industrial gas manufacturing: carbon dioxide", Trading Economics. Retrieved from https://tradingeconomics.com/united-states/producer-price-index-by-industry-industrial-gas-manufacturing-carbon-dioxide-fed-data.html.
31 Korea Energy Economics Institute, "Electricity unit price by contract type", Korea Energy Economics Institute. Retrieved from http://www.kesis.net/sub/subChart.jsp?M_MENU_ID=M_M_001&S_MENU_ID=S_M_004&report_id=34110&reportCd=34110&chartCategory=line&minYN=1961&reportType=0.