Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.4.174

Ionomer Binder in Catalyst Layer for Polymer Electrolyte Membrane Fuel Cell and Water Electrolysis: An Updated Review  

Park, Jong-Hyeok (Department of Civil, Enviromental, and Biomedical Engineering, The Graduate School, Sangmyung University)
Akter, Mahamuda (Department of Civil, Enviromental, and Biomedical Engineering, The Graduate School, Sangmyung University)
Kim, Beom-Seok (Department of Green Engineering, College of Engineering, Sangmyung University)
Jeong, Dahye (Department of Green Engineering, College of Engineering, Sangmyung University)
Lee, Minyoung (Department of Green Engineering, College of Engineering, Sangmyung University)
Shin, Jiyun (Department of Green Engineering, College of Engineering, Sangmyung University)
Park, Jin-Soo (Department of Civil, Enviromental, and Biomedical Engineering, The Graduate School, Sangmyung University)
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.4, 2022 , pp. 174-183 More about this Journal
Abstract
Polymer electrolyte fuel cells and water electrolysis are attracting attention in terms of high energy density and high purity hydrogen production. The catalyst layer for the polymer electrolyte fuel cell and water electrolysis is a porous electrode composed of a precious metal-based electrocatalyst and an ionomer binder. Among them, the ionomer binder plays an important role in the formation of a three-dimensional network for ion conduction in the catalyst layer and the formation of pores for the movement of materials required or generated for the electrode reaction. In terms of the use of commercial perfluorinated ionomers, the content of the ionomer, the physical properties of the ionomer, and the type of the dispersing solvent system greatly determine the performance and durability of the catalyst layer. Until now, many studies have been reported on the method of using an ionomer for the catalyst layer for polymer electrolyte fuel cells. This review summarizes the research results on the use of ionomer binders in the fuel cell aspect reported so far, and aims to provide useful information for the research on the ionomer binder for the catalyst layer, which is one of the key elements of polymer electrolyte water electrolysis to accelerate the hydrogen economy era.
Keywords
Polymer Electrolyte Membrane Fuel Cell; Polymer Electrolyte Membrane Water Electrolysis; Catalyst layer; Ionomer Binder;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 B. G. Pollet, The use of power ultrasound for the production of PEMFC and PEMWE catalysts and low-Pt loading and high-performing electrodes, Catalysts, 9(3), 246 (2019).   DOI
2 D. Kim, K. Han, and D.-Y. Yoon, Effect of air flow rate on the performance of planar solid oxide fuel cell using CFD, J. Korean Electrochem. Soc., 18(4), 172-181 (2015).   DOI
3 M. Kim, J. Ha, Y.-T. Kim, and J. Choi, Technology trends in stainless steel for water splitting application, J. Korean Electrochem. Soc., 24(2), 13-27 (2021).
4 R. E. Rosli, A. B. Sulong, W. R. W. Daud, M. A. Zulkifley, T. Husaini, M. I. Rosli, E. H. Majlan, and M. A. Haque, A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, Int. J. Hydrogen Energy, 42(14), 9293-9314 (2017).   DOI
5 M.-S. Shin, C.-H. Song, M.-S. Kang, and J.-S. Park, Decal transfer method of hydrocarbon membranes for fabricating a membrane electrode assembly (MEA), New Renew. Energy, 13(3), 51-57 (2017).   DOI
6 H. S. Yoon, W. S. Jung, and M. H. Choe, Recent advances in Studies of the Activity of Non-precious Metal Catalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells, J. Korean Electrochem. Soc., 23(4), 90-96 (2020).
7 Q. Feng, G. Liu, B. Wei, Z. Zhang, H. Li, and H. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 366, 33-55 (2017).   DOI
8 D. Lee, and S. Hwang, Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs, Int. J. Hydrogen Energy, 33(11), 2790-2794 (2008).   DOI
9 H. Ishikawa, Y. Sugawara, G. Inoue, and M. Kawase, Effects of Pt and ionomer ratios on the structure of catalyst layer: A theoretical model for polymer electrolyte fuel cells, J. Power Sources, 374, 196-204 (2018).   DOI
10 3MTM Ionomers. Available online: https://www.3m.com/3M/en_US/design-and-specialty-materialsus/?utm_medium=redirect&utm_source=vanityurl&utm_campaign=www.3M.com/Ionomers (accessed on 1st November 2022).
11 A. Kusoglu and A. Z. Weber, New insights into perfluorinated sulfonic-acid ionomers, Chem. rev., 117(3), 987-1104 (2017).   DOI
12 J.-H. Park, M.-S. Shin, and J.-S. Park, Effect of dispersing solvents for ionomers on the performance and durability of catalyst layers in proton exchange membrane fuel cells, Electrochim. Acta, 391, 138971 (2021).   DOI
13 PemionTM. Available online: https://ionomr.com/solutions/pemion/ (accessed on 1st November 2022).
14 W. J. Cho, M. S. Lee, Y. S. Lee, Y. G. Yoon, and Y. W. Choi, A study on sulfonated fluorenyl poly (ether sulfone) s as catalyst binders for polymer electrolyte fuel cells, J. Korean Electrochem. Soc., 19(2), 39-44 (2016).   DOI
15 H. Yu, J. M. Roller, W. E. Mustain, and R. Maric, Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology, J. Power Sources, 283, 84-94 (2015).   DOI
16 E. Moukheiber, G. De Moor, L. Flandin, and C. Bas, Investigation of ionomer structure through its dependence on ion exchange capacity (IEC), J. Mem. Sci., 389, 294-304 (2012).   DOI
17 D. Brandell, J. Karo, A. Liivat, and J. O. Thomas, Molecular dynamics studies of the NafionⓇ, DowⓇ and AciplexⓇ fuel-cell polymer membrane systems, J. Mol. Model., 13(10), 1039-1046 (2007).   DOI
18 E. Yuk, H. Lee, N. Jung, D. Shin, and B. Bae, Electrochemical characteristics of electrode by various preparation methods for alkaline membrane fuel cell, J. Korean Electrochem. Soc., 24(4), 106-112 (2021).
19 E. Kim, S. Yim, B. Bae, T. Yang, S. Park, and H. choi, Self-humidifying electrodes at low humidity for polymer electrolyte membrane fuel cells (PEMFCs), New Renew. Energy, 11(4), 46-51 (2015).   DOI
20 H. Y. Lee, H. K. Hwang, J. G. Lee, Y. Jeon, D.-H. Park, J. H. Kim, and Y.-G. Shul, Electrospun poly (ether sulfone) membranes impregnated with nafion for high-temperature polymer electrolyte membrane fuel cells, J. Korean Electrochem. Soc., 19(1), 9-13 (2016).   DOI
21 S. Zhang, X. Z. Yuan, J. N. C. Hin, H. Wang, K. A. Friedrich, and M. Schulze, A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells, J. Power Sources, 194(2), 588-600 (2009).   DOI
22 J.-H. Park, B.-S. Kim, and J.-S. Park, Effect of ionomer dispersions on the performance of catalyst layers in proton exchange membrane fuel cells, Electrochim. Acta, 424, 140680 (2022).   DOI
23 T. Li, J. Shen, G. Chen, S. Guo, and G. Xie, Performance comparison of proton exchange membrane fuel cells with nafion and aquivion perfluorosulfonic acids with different equivalent weights as the electrode binders, ACS omega, 5(28), 17628-17636 (2020).   DOI
24 M. Breitwieser, T. Bayer, A. , Buechler, R. Zengerle, S. M. Lyth, and S. Thiele, A fully spraycoated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer, J. Power Sources, 351, 145-150 (2017).   DOI
25 S. Litster, and G. McLean, PEM fuel cell electrodes, J. Power Sources, 130(1-2), 61-76 (2004).   DOI
26 S.-Y. Ahn, Y.-C. Lee, H. Y. Ha, S.-A. Hong, and I.-H. Oh, Effect of the ionomers in the electrode on the performance of PEMFC under nonhumidifying conditions, Electrochim. Acta, 50(2-3), 673-676 (2004).   DOI
27 K.-H. Kim, K.-Y. Lee, H.-Y. Kim, E. Cho, S.-Y. Lee, T.-H. Lim, S. P. Yoon, I. C. Hwang, and J. H. Jang, The effects of NafionⓇ ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method, Int. J. Hydrogen Energy, 35(5), 2119-2126 (2010).
28 Y. Liu, C. Ji, W. Gu, D. R. Baker, J. Jorne, and H. A. Gasteiger, Proton conduction in PEM fuel cell cathodes: effects of electrode thickness and ionomer equivalent weight, J. Electrochem. Soc., 157(8), B1154 (2010).   DOI
29 H. Ren, Y. Teng, X. Meng, D. Fang, H. Huang, J. Geng, and Z. Shao, Ionomer network of catalyst layers for proton exchange membrane fuel cell, J. Power Sources, 506, 230186 (2021).   DOI
30 S. Shahgaldi, I. Alaefour, and X. Li, The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability, Appl. Energy, 217, 295-302 (2018).   DOI
31 Y. V. Yakovlev, Y. V. Lobko, M. Vorokhta, J. Novakova, M. Mazur, I. Matolinova, and V. Matolin, Ionomer content effect on charge and gas transport in the cathode catalyst layer of protonexchange membrane fuel cells, J. Power Sources, 490, 229531 (2021).   DOI
32 Y. Jang, C. Seol, S. M. Kim, and S. Jang, Investigation of the correlation effects of catalyst loading and ionomer content in an anode electrode on the performance of polymer electrode membrane water electrolysis, Int. J. Hydrogen Energy, 47(42), 18229-18239 (2022).   DOI
33 A. S. Arico, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, and V. Antonucci, Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources, J. Appl. Electrochem., 43(2), 107-118 (2013).   DOI
34 N. Yoshida, T. Ishisaki, A. Watakabe, and M. Yoshitake, Characterization of Flemion(R) membranes for PEFC, Electrochim. Acta, 43(24), 3749-3754 (1998).   DOI
35 C. Lei, F. Yang, N. Macauley, M. Spinetta, G. Purdy, J. Jankovic, D. A. Cullen, K. L. More, Y. S. Kim, and H. Xu, Impact of catalyst ink dispersing solvent on PEM fuel cell performance and durability, J. Electrochem. Soc., 168(4), 044517 (2021).   DOI
36 C.-H. Song, and J.-S. Park, Effect of dispersion solvents in catalyst inks on the performance and durability of catalyst layers in proton exchange membrane fuel cells, Energies, 12(3), 549 (2019).   DOI
37 M. Saito, N. Arimura, K. Hayamizu, and T. Okada, Mechanisms of ion and water transport in perfluorosulfonated ionomer membranes for fuel cells, J. Phys. Chem. B, 108(41), 16064-16070 (2004).   DOI
38 S. J. Hamrock, and M. A. Yandrasits, Proton exchange membranes for fuel cell applications, J. macromol. sci., Polym. rev., 46(3), 219-244 (2006).   DOI
39 J. Li, M. Pan, and H. Tang, Understanding shortside-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells, RSC adv., 4(8), 3944-3965 (2014).   DOI
40 Y. Garsany, R. W. Atkinson, M. B. Sassin, R. M. Hjelm, B. D. Gould, and K. E. Swider-Lyons, Improving PEMFC performance using short-sidechain low-equivalent-weight PFSA ionomer in the cathode catalyst layer, J. Electrochem. Soc., 165(5), F381 (2018).   DOI
41 D.-C. Huang, P.-J. Yu, F.-J. Liu, S.-L. Huang, K.-L. Hsueh, Y.-C. Chen, C.-H. Wu, W.-C. Chang and F.-H. Tsau, Effect of dispersion solvent in catalyst ink on proton exchange membrane fuel cell performance, Int. J. Electrochem. Sci., 6(7), 2551-2565 (2011).   DOI
42 K. Ayers, High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes, Curr. Opin. Chem. Eng., 33, 100719 (2021).   DOI
43 S. S. Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis-A review, Mater. Sci. Energy Technol., 2(3), 442-454 (2019).
44 P. Trinke, G. P. Keeley, M. Carmo, B. Bensmann, and R. Hanke-Rauschenbach, Elucidating the effect of mass transport resistances on hydrogen crossover and cell performance in PEM water electrolyzers by varying the cathode ionomer content, J. Electrochem. Soc., 166(8), F465 (2019).   DOI
45 W. Xu, and K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance, Int. J. Hydrogen Energy, 35(21), 12029-12037 (2010).   DOI
46 C. M. Johnston, K. S. Lee, T. Rockward, A. Labouriau, N. Mack, and Y. S. Kim, Impact of solvent on ionomer structure and fuel cell durability, ECS Trans., 25(1), 1617 (2009).
47 M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE?loaded carbon on the catalyst layer of polymer electrolyte fuel cells, J. Electrochem. Sci. Technol., 142(12), 4143 (1995).   DOI
48 H. Jung, N. Choi, S. Im, D. Yoon, and S. Moon, Performance degradation of mea with cation Contamination in polymer electrolyte membrane water electrolysis, Trans. Korean Hydrogen New Energy Soc., 28(4), 331-337 (2017).
49 J. Kim and K. Lee, Research trend in electrocatalysts for anion exchange membrane water electrolysis, J. Korean Electrochem. Soc., 25(2), 69-80 (2022).
50 J. G. Choi, K. Ham, S. Bong, and J. Lee, Phosphate-decorated Pt Nanoparticles as methanoltolerant oxygen reduction electrocatalyst for direct methanol fuel cells, J. Electrochem. Sci. Technol., 13(3), 354-361 (2022).   DOI
51 D. You, Y. Lee, H. Cho, J.-H. Kim, C. Pak, G. Lee, K.-Y. Park, and J.-Y. Park, High performance membrane electrode assemblies by optimization of coating process and catalyst layer structure in direct methanol fuel cells, Int. J. Hydrogen Energy, 36(8), 5096-5103 (2011).   DOI
52 D. Kim, S. Woo, S.-H. Park, N. Jung, and S.-D. Yim, Study on the CO tolerance of anode catalyst layers with ionomer content for polymer electrolyte membrane fuel cells, New Renew. Energy, 14(4), 38-45 (2018).   DOI
53 Aquivion? ion conducting polymers. Available online: https://www.solvay.com/en/brands/aquivion-ionconducting-polymers (accessed on 1st November 2022).
54 NafionTM Polymer Dispersions. Available online: https://www.nafion.com/en/products/polymer-dispersions (accessed on 1st November 2022).