Browse > Article
http://dx.doi.org/10.11626/KJEB.2022.40.4.464

Temporal variation in the community structure of green tide forming macroalgae(Chlorophyta; genus Ulva) on the coast of Jeju Island, Korea based on DNA barcoding  

Hye Jin Park (Molecular Ecology and Evolution Laboratory, Department of Biological Science, Sangji University)
Seo Yeon Byeon (Molecular Ecology and Evolution Laboratory, Department of Biological Science, Sangji University)
Sang Rul Park (Estuarine and Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University)
Hyuk Je Lee (Molecular Ecology and Evolution Laboratory, Department of Biological Science, Sangji University)
Publication Information
Korean Journal of Environmental Biology / v.40, no.4, 2022 , pp. 464-476 More about this Journal
Abstract
In recent years, macroalgal bloom occurs frequently in coastal oceans worldwide. It might be attributed to accelerating climate change. "Green tide" events caused by proliferation of green macroalgae (Ulva spp.) not only damage the local economy, but also harm coastal environments. These nuisance events have become common across several coastal regions of continents. In Korea, green tide incidences are readily seen throughout the year along the coastlines of Jeju Island, particularly the northeastern coast, since the 2000s. Ulva species are notorious to be difficult for morphology-based species identification due to their high degrees of phenotypic plasticity. In this study, to investigate temporal variation in Ulva community structure on Jeju Island between 2015 and 2020, chloroplast barcode tufA gene was sequenced and phylogenetically analyzed for 152 specimens from 24 sites. We found that Ulva ohnoi and Ulva pertusa known to be originated from subtropical regions were the most predominant all year round, suggesting that these two species contributed the most to local green tides in this region. While U. pertusa was relatively stable in frequency during 2015 to 2020, U. ohnoi increased 16% in frequency in 2020 (36.84%), which might be associated with rising sea surface temperature from which U. ohnoi could benefit. Two species (Ulva flexuosa, Ulva procera) of origins of Europe should be continuously monitored. The findings of this study provide valuable information and molecular genetic data of genus Ulva occurring in southern coasts of Korea, which will help mitigate negative influences of green tide events on Korea coast.
Keywords
climate change; green tide; Jeju Island; DNA barcoding; Ulva;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 An JW and KW Nam. 2017. First record of Ulva torta (Ulvales, Chlorophyta) in Korea. Korean J. Environ. Biol. 35:329-334. https://doi.org/10.11626/KJEB.2017.35.3.329    DOI
2 Bolam SG, TF Fernandes, P Read and D Raffaelli. 2000. Effects of macroalgal mats on intertidal sandflats: an experimental study. J. Exp. Mar. Biol. Ecol. 249:123-137. https://doi.org/10.1016/S0022-0981(00)00185-4    DOI
3 Choi SK, YH Kang and SR Park. 2020. Growth responses of kelp species Ecklonia cava to different temperatures and nitrogen sources. Korean J. Environ. Biol. 38:404-415. https://doi.org/10.11626/KJEB.2020.38.3.404    DOI
4 Destombe C, M Valero and ML Guillemin. 2010. Delineation of two sibling red algal species, Gracilaria gracilis and Gracilaria dura (Gracilariales, Rhodophyta), using multiple DNA markers: Resurrection of the species G. dura previously described in the northern Atlantic 200 years ago. J. Phycol. 46:720-727. https://doi.org/10.1111/j.1529-8817.2010.00846.x    DOI
5 Flagella MM, N Andreakis, M Hiraoka, M Verlaque and MC Buia. 2010. Identification of cryptic Ulva species (Chlorophyta, Ulvales) transported by ballast water. J. Biol. Res. 13:47. 
6 Flagella MM, M Verlaque, A Soria and MC Buia. 2007. Macroalgal survival in ballast water tanks. Mar. Pollut. Bull. 54:1395-1401. https://doi.org/10.1016/j.marpolbul.2007.05.015    DOI
7 Fletcher R. 1996. The occurrence of "green tides" - a review. pp. 7-43. In: Marine Benthic Vegetation (Schramm W and PH Nienhuis, eds.). Springer Berlin. Heidelberg, Germany. 
8 Han IS and JS Lee. 2020. Change the annual amplitude of sea surface temperature due to climate change in a recent decade around the Korean Peninsula. J. Korean Soc. Mar. Environ. Saf. 26:233-241. https://doi.org/10.7837/kosomes.2020.26.3.233    DOI
9 Hanyuda T and H Kawai. 2018. Genetic examination of the type specimen of Ulva australis suggests that it was introduced to Australia. Phycol. Res. 66:238-241. https://doi.org/10.1111/pre.12222    DOI
10 Haritonidis S. 1978. A survey of the marine algae of Thermaikos Gulf, Thessaloniki, Greece. I. Distribution and seasonal periodicity. Bot. Marina 21:527-535. https://doi.org/10.1515/botm.1978.21.8.527    DOI
11 Hiraoka M, M Ohno, S Kawaguchi and G Yoshida. 2004a. Crossing test among floating Ulva thalli forminggreen tide'in Japan. Hydrobiologia 512:239-245.    DOI
12 Kang EJ, JH Kim, K Kim, HG Choi and KY Kim. 2014. Re-evaluation of green tide-forming species in the Yellow Sea. Algae 29:267-277. https://doi.org/10.4490/algae.2014.29.4.267    DOI
13 Hiraoka M, S Shimada, M Uenosono and M Masuda. 2004b. A new green-tide-forming alga, Ulva ohnoi Hiraoka et Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. Phycol. Res. 52:17-29. https://doi.org/10.1111/j.1440-1835.2003.00321.x    DOI
14 Hofmann LC, JC Nettleton, CD Neefus and AC Mathieson. 2010. Cryptic diversity of Ulva(Ulvales, Chlorophyta) in the Great Bay Estuarine System (Atlantic USA): introduced and indigenous distromatic species. Eur. J. Phycol. 45:230-239. https://doi.org/10.1080/09670261003746201    DOI
15 Kang EJ, AR Han, JH Kim, IN Kim, S Lee, JO Min, BR Nam, YJ Choi, MS Edwards and G Diaz-Pulido. 2021. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming. Sci. Total Environ. 769:144443. https://doi.org/10.1016/j.scitotenv.2020.144443    DOI
16 Kang JH, JE Jang, JH Kim, SY Byeon, S Kim, SK Choi, YH Kang, SR Park and HJ Lee. 2019. Species composition, diversity, and distribution of the genus Ulva along the coast of Jeju Island, Korea based on molecular phylogenetic analysis. PLoS One 14:e0219958. https://doi.org/10.1371/journal.pone.0219958    DOI
17 Kawai H, S Shimada, T Hanyuda and T Suzuki. 2007. Species diversity and seasonal changes of dominant Ulva species (Ulvales, Ulvophyceae) in Mikawa Bay, Japan, deduced from ITS2 rDNA region sequences. Algae 22:221-228. https://doi.org/10.4490/ALGAE.2007.22.3.221    DOI
18 Kearse M, R Moir, A Wilson, S Stones-Havas, M Cheung, S Sturrock and A Drummond. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649. https://doi.org/10.1093/bioinformatics/bts199    DOI
19 Kirkendale L, GW Saunders and P Winberg. 2013. A molecular survey of Ulva (Chlorophyta) in temperate Australia reveals enhanced levels of cosmopolitanism. J. Phycol. 49:69-81. https://doi.org/10.1111/jpy.12016    DOI
20 Kim KY, TS Choi, JH Kim, T Han, HW Shin and DJ Garbary. 2004. Physiological ecology and seasonality of Ulva pertusa on a temperate rocky shore. Phycologia 43:483-492. https://doi.org/10.2216/i0031-8884-43-4-483.1    DOI
21 Lawton RJ, L Mata, R Nys and NA Paul. 2013. Algal bioremediation of waste waters from land-based aquaculture using Ulva: selecting target species and strains. PLoS One 8:e77344. https://doi.org/10.1371/journal.pone.0077344    DOI
22 Lee HW, JC Kang and MS Kim. 2019. Taxonomy of Ulva causing blooms from Jeju Island, Korea with new species, U. pseudoohnoi sp. nov. (Ulvales, Chlorophyta). Algae 34:253-266. https://doi.org/10.4490/algae.2019.34.12.9    DOI
23 Lee SH, PJ Kang and KW Nam. 2014. New record of two marine ulvalean species (Chlorophyta) in Korea. J. Ecol. Environ. 37:379-385. https://doi.org/10.5141/ecoenv.2014.039    DOI
24 Loughnane CJ, LM McIvor, F Rindi, DB Stengel and MD Guiry. 2008. Morphology, rbc L phylogeny and distribution of distromatic Ulva(Ulvophyceae, Chlorophyta) in Ireland and southern Britain. Phycologia 47:416-429. https://doi.org/10.2216/PH07-61.1    DOI
25 Matsumoto T, F Shinozaki, T Chikuni, A Yabuki, K Takishita, M Kawachi, T Nakayama, I Inouye, T Hashimoto and Y Inagaki. 2011. Green-colored plastids in the dinoflagellate genus Lepidodinium are of core chlorophyte origin. Protist 162:268-276. https://doi.org/10.1016/j.protis.2010.07.001    DOI
26 McGlathery KJ. 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J. Phycol. 37:453-456. https://doi.org/10.1046/j.1529-8817.2001.037004453.x    DOI
27 O'Kelly CJ, B Wysor and WK Bellows. 2004. Gene sequence diversity and the phylogenetic position of algae assigned to the genera Phaeophila and Ochlochaete (Ulvophyceae, Chlorophyta). J. Phycol. 40:789-799. https://doi.org/10.1111/j.1529-8817.2004.03204.x    DOI
28 Mineur F, MP Johnson and CA Maggs. 2008. Macroalgal introductions by hull fouling on recreational vessels: seaweeds and sailors. Environ. Manage. 42:667-676. https://doi.org/10.1007/s00267-008-9185-4    DOI
29 Nakamura M, NH Kumagai, M Tamaoki, K Arita, Y Ishii, N Nakajima and T Yabe. 2020. Photosynthesis and growth of Ulva ohnoi and Ulva pertusa(Ulvophyceae) under high light and high temperature conditions, and implications for green tide in Japan. Phycol. Res. 68:152-160. https://doi.org/10.1111/pre.12410    DOI
30 Norkko A and E Bonsdorff. 1996. Rapid zoobenthic community responses to accumulations of drifting algae. Mar. Ecol. Prog. Ser. 131:143-157. https://doi.org/10.3354/meps131143    DOI
31 Park JY, S Shin, JH Chae, HJ Lee and YD Mo. 2022 Development of the Methods for Controlling and Managing the Marine Ecosystem Disturbing and Harmful Organisms. Marine Ecology Division, Ministry of Oceans and Fisheries. Sejong, Korea. 
32 Park SR. 2014. Seasonal patterns and recruitment dynamics of green tide-forming Ulva species along the intertidal rocky shores of the southern coast of Korea. Ocean Sci. J. 49:383-390. https://doi.org/10.1007/s12601-014-0035-4    DOI
33 Rinkel BE, P Hayes, C Gueidan and J Brodie. 2012. A molecular phylogeny of acrochaete and other endophytic green algae (Ulvales, Chlorophyta) 1. J. Phycol. 48:1020-1027.    DOI
34 Santelices B, D Aedo and A Hoffmann. 2002. Banks of microscopic forms and survival to darkness of propagules and microscopic stages of macroalgae. Rev. Chil. Hist. Nat. 75:547-555. https://doi.org/10.4067/S0716-078X2002000300006    DOI
35 Smetacek V and A Zingone. 2013. Green and golden seaweed tides on the rise. Nature 504:84-88. https://doi.org/10.1038/nature12860    DOI
36 Saunders GW and H Kucera. 2010. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogam. Algol. 31:487-528. 
37 Saunders GW. 2014. Long distance kelp rafting impacts seaweed biogeography in the Northeast Pacific: the kelp conveyor hypothesis. J. Phycol. 50:968-974. https://doi.org/10.1111/jpy.12237    DOI
38 Schramm W and P Nienhuis. 1997. Marine benthic vegetation: recent changes and the effects of eutrophication. Oceanographic Literature Review 2:158.
39 Steinhagen S, L Dusedau and F Weinberger. 2021. DNA barcoding of the German green supralittoral zone indicates the distribution and phenotypic plasticity of Blidingia species and reveals Blidingia cornuta sp. nov. Taxon 70:229-245. https://doi.org/10.1002/tax.12445    DOI
40 Steinhagen S, R Karez and F Weinberger. 2019. Cryptic, alien and lost species: molecular diversity of Ulva sensu lato along the German coasts of the North and Baltic Seas. Eur. J. Phycol. 54:466-483. https://doi.org/10.1080/09670262.2019.1597925    DOI
41 Tamura K, G Stecher, D Peterson, A Filipski and S Kumar. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197    DOI
42 Teichberg M, SE Fox, YS Olsen, I Valiela, P Martinetto, O Iribarne, EY Muto, MA Petti, TN Corbisier and M Soto-Jimenez. 2010. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob. Change Biol. 16:2624-2637. https://doi.org/10.1111/j.1365-2486.2009.02108.x    DOI
43 Wang Y, B Zhou and X Tang. 2009. Effects of two species of macroalgae - Ulva pertusa and Gracilaria lemaneiformis - on growth of Heterosigma akashiwo (Raphidophyceae). J. Appl. Phycol. 21:375-385. https://doi.org/10.1007/s10811-008-9380-y    DOI
44 Valiela I, J McClelland, J Hauxwell, PJ Behr, D Hersh and K Foreman. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42:1105-1118. https://doi.org/10.4319/lo.1997.42.5_part_2.1105    DOI
45 Wan AH, RJ Wilkes, S Heesch, R Bermejo, MP Johnson and L Morrison. 2017. Assessment and characterisation of Ireland's green tides (Ulva species). PLoS One 12:e0169049. https://doi.org/10.1371/journal.pone.0169049    DOI
46 Wang S, Y Huo, J Zhang, J Cui, Y Wang, L Yang, Q Zhou, Y Lu, K Yu and P He. 2018. Variations of dominant free-floating Ulva species in the source area for the world's largest macroalgal blooms, China: Differences of ecological tolerance. Harmful Algae 74:58-66. https://doi.org/10.1016/j.hal.2018.03.007    DOI
47 Wolf MA, K Sciuto, C Andreoli and I Moro. 2012. Ulva(Chlorophyta, Ulvales) biodiversity in the North Adriatic Sea (Mediterranean, Italy): cryptic species and new introductions. J. Phycol. 48:1510-1521. https://doi.org/10.1111/jpy.12005    DOI
48 Xiao Y, R Liu, K Kim, J Zhang and T Cui. 2021. A random forest-based algorithm to distinguish Ulva prolifera and Sargassum from multispectral satellite images. IEEE Trans. Geosci. Remote Sensing 60:1-15. https://doi.org/10.1109/TGRS.2021.3071154    DOI
49 Ye NH, XW Zhang, YZ Mao, CW Liang, D Xu, J Zou, ZM Zhuang and QY Wang. 2011. 'Green tides' are overwhelming the coastline of our blue planet: taking the world's largest example. Ecol. Res. 26:477-485. https://doi.org/10.1007/s11284-011-0821-8    DOI
50 Yoshida G, M Uchimura and M Hiraoka. 2015. Persistent occurrence of floating Ulva green tide in Hiroshima Bay, Japan: seasonal succession and growth patterns of Ulva pertusa and Ulva spp. (Chlorophyta, Ulvales). Hydrobiologia 758:223-233. https://doi.org/10.1007/s10750-015-2292-3    DOI
51 Zanolla M, R Carmona, H Kawai, DB Stengel and M Altamirano. 2019. Role of thermal photosynthetic plasticity in the dispersal and settlement of two global green tide formers: Ulva pertusa and U. ohnoi. Mar. Biol. 166:1-12. https://doi.org/10.1007/s00227-019-3578-1    DOI
52 Zhang J, J Shi, S Gao, Y Huo, J Cui, H Shen, G Liu and P He. 2019. Annual patterns of macroalgal blooms in the Yellow Sea during 2007-2017. PLoS One 14:e0210460. https://doi.org/10.1371/journal.pone.0210460    DOI
53 Zhang X, D Xu, Y Mao, Y Li, S Xue, J Zou and N Ye. 2011. Settlement of vegetative fragments of Ulva prolifera confirmed as an important seed source for succession of a large-scale green tide bloom. Limnol. Oceanogr. 56:233-242. https://doi.org/10.4319/lo.2011.56.1.0233    DOI