• Title/Summary/Keyword: Green House Gas Reduction

Search Result 95, Processing Time 0.028 seconds

Physical Properties of Mineral Hydrate Insulation Used Desulfurization Gypsum (탈황석고를 사용한 미네랄 하이드레이트 단열소재의 물리적 특성 연구)

  • Park, Jae-Wan;La, Yun-Ho;Chu, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.291-296
    • /
    • 2014
  • For the purpose of energy consumption and green-house gas reduction from building, new insulation materials with improved thermal property have been developed and used. Among new insulation materials, mineral hydrate which compensates for the defects of existing materials is using as a prominent insulation material. The fabrication method of mineral hydrate is similar to that of ALC for building structure but mineral hydrate is only used for insulation. The raw materials that make up of mineral hydrate are cement, lime and anhydrite. Especially anhydrite is all dependant on imports. In this study, Desulfurization Gypsum(DG), by-product of oil plant, was used for replacing for imported anhydrite and waste recycling. DG substituted all of anhydrite and a part of lime. Mineral hydrate used DG had analogous thermal and physical properties, compared to existing mineral hydrate.

Effect of Fossil Fuels and Green House Gas on Production Efficiency and Economic Growth (화석 연료와 온실가스 저감이 생산효율과 경제성장에 미치는 효과 -전통적 접근과 MFA접근 비교-)

  • Kang, Sangmok
    • Environmental and Resource Economics Review
    • /
    • v.23 no.3
    • /
    • pp.365-408
    • /
    • 2014
  • The purpose of this paper is to compare efficiencies, two stage efficiencies, and the reduction of economic growth due to the restraint of $CO_2$ and fossil fuel in two efficiency approach by pointing out the limit of traditional efficiency approach and introducing material balance approach. The efficiencies under the traditional approach and the material balance approach report significant gaps when they are analyzed in detail. Especially, in case not including fossil fuels, the low income countries show the bad performance of production efficiencies, but OECD and high-middle income countries reveal the better performance than that of the low countries. It fails to reflect the reality justly. Based on the material balance approach, the low income countries report the higher performance and the alleviated effect of environmental components for economic growth than OECD's.

SNG Production from Wood Biomass with Dual Fluidized-Bed Gasifier (목재 바이오매스를 활용한 이중유동층 가스화기의 SNG 생산)

  • Yoon, Hyungchul;Cho, Sungho;Lee, Dock-jin;Moon, Goyoung;Cho, Soonhaing
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.214-225
    • /
    • 2016
  • Gasification is one of the important contribution to resource recycling by conversion of biomass to a variety of energy sources such as alcohol, SNG etc., and to global warming prevention by reduction of green house gases such as $CO_2$. The aim of this study is to draw the optimal operation condition of dual fluidized-bed gasifier with biomass fuel, to verify SNG production efficiency and to establish the basis for the domestic commercialization of dual fluidized bed gasification. As a result, dual fluidized-bed gasifier has the optimal conditions at $826^{\circ}C$ with steam input 1,334 g/hr, air input 5.56 L/min. The carbon conversion is 81% and SNG production efficiency was $CH_4$ 92%.

Hydrothermal Synthesis and Characterization of BaTiO3 Fine Powders (BaTiO3 미세 분말의 수열합성 및 특성분석)

  • Park, Jung-Hoon;Park, Sangdo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.448-454
    • /
    • 2007
  • Hydrothermal synthesis was conducted with starting material as Barium hydroxide and hydrous titania ($TiO_2{\cdot}xH_2O$) to obtain barium titanate fine Powder. The conversion, crystal structure and properties of as-prepared powder were investigated according to reaction temperature, time and concentration. The effect of variables on conversion was in order of time < temperature < concentration and the maximum conversion reached to 99.5% in the case of hydrothermal synthesis at $180^{\circ}C$ for 2 h with 2.0 M reactant concentration. At low concentration such as 0.25 M, formation of unreacted $BaCO_3$ and $TiO_2$ was not inevitable at even high reaction temperature and these components converted into $BaTi_2O_5$ at high temperature and remained as impurity. As concentration of reactant increased, the size of as-synthesized $BaTiO_3$ powder deceased and Ba/Ti molar ratio approached into 1, showing Ba/Ti ratio of $1{\pm}0.005$ for reaction at $180^{\circ}C$ for 2 h with 2.0 M concentration.

A Experimental Study on Nitrous Oxide Formation in Direct Injection Diesel Engine (직접분사식 디젤엔진에서 아산화질소의 생성에 관한 실험적 연구)

  • Yoo, Dong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2015
  • It has been generally recognized that $N_2O$(Nitrous Oxide) emission from marine diesel engines has a close correlation with $SO_2$(Sulfur Dioxide) emission, and diversity of fuel elements using ships affects characteristics of the $N_2O$ emission. According to recent reports, in case of existence of an enough large NO(Nitric Oxide) generated as fuel combustion, effect of the $SO_2$ emission in exhaust gas on the $N_2O$ formation is more vast than effect of the NO. Therefore, $N_2O$ formation due to the $SO_2$ element operates on a important factor in EGR(Exhaust Gas Recirculation) systems for NOx reduction. An aim of this experimental study is to investigate that intake gas of the diesel engine with increasing of $SO_2$ flow rate affects $N_2O$ emission in exhaust gas. A test engine using this experiment was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition was set up at a 75% load. A standard $SO_2$ gas with 0.499%($m^3/m^3$) was used for changing of $SO_2$ concentration in intake gas. In conclusion, the diesel fuel included out sulfur elements did mot emit the $SO_2$ emission, and the $SO_2$ emission in exhaust gas according as increment of the $SO_2$ standard gas had almost the same ratio compared with $SO_2$ rate in mixture inlet gas. Furthermore, the $N_2O$ element in exhaust gas was formed as $SO_2$ mixture in intake gas because increment of $SO_2$ flow rate in intake gas increased $N_2O$ emission. Hence, diesel fuels included sulfur compounds were combined into $SO_2$ in combustion, and $N_2O$ in exhaust gas should be generated to react with NO and $SO_2$ which exist in a combustion chamber.

Study on the Morphological Change and Reduction Plan of Nitrogen and Phosphorous in Litter and Manure of Cow House (우사의 깔짚과 퇴비에 있는 질소와 인의 형태적 변화와 저감 방안에 관한 연구)

  • Kim, Younjung;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.4
    • /
    • pp.249-253
    • /
    • 2021
  • Litter and manure were obtained at a cow house of a livestock farm in Andondg city. We examined the change of formation of nitrogen and phosphorous from these samples and tried to suggest a more useful and realistic way for removing them. Constituent and its content of sample were identified by XRF. NO2-, NO3-, and PO43- ions and NH4+, T-P and T-N released from sample were analyzed using ion chromatograph and UV/Vis spectrometry, respectively. As the results of this study, the ammonia nitrogen in the early stage of cow excretion is a need to make an ammonia gas state that can be immediately volatile by increasing the pH. Nitrogen and phosphorous, the main source of nutrition in green algal bloom can be removed by transforming insoluble salts such as calcium phosphate (CaHPO4·3H2O) and struvite (NH4MgPO4·6H2O), respectively, with addition of Ca and Mg after stimulating fermentation of manure.

A Study on Eco-Port Policy of Japan and Its' Implications (일본의 친환경항만정책과 시사점)

  • Choi, Seok-Beom;Nam, Jung-Woo
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.3
    • /
    • pp.331-348
    • /
    • 2011
  • Recently, international society strongly concerns global green house effect. As a result each nation introduces green policy for their economy and sustainable development. The emissions of carbon dioxide come from various sources, such as ports and port activities. Especially, port is a logistics hub for shipping, road and railways. Therefore, successful reduction of emissions in the port may encourage other transportations to reduce emissions. Korea as developing country is excused from Annex I countries which committed themselves to reduce four greenhouse gases. However, Korea is going to be placed in Annex I countries in 2013. Korean economy is heavily dependent on international trade and especially, 99.8% of its international trade cargoes is transported through the ports. Therefore, Eco-port plays a very important role in future Korean sustainable development. By introducing the most advanced port pollution regulations, Japan has taken a immediate step for Eco-port policy. International trade is very significant in Korea as well as in Japan, both nations have similar industrial structure. Therefore, Korea should pay attention to Japanese Eco-port policy and activities. This paper examines Japanese Eco-port policy and its' implications in order for Korea to find the most efficient way to reduce the emissions as Korea should reduce greenhouse gas emissions in post kyoto system.

A Study of Expressway Tollbooth Metering Effect (고속도로 영업소 미터링 효과에 관한 연구)

  • Im, Jin-Won;Yoon, Jae-Yong;Lee, Eui-Eun;Kim, Kwan-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • According to the worldwide efforts to reduce greenhouse gases consequent upon climatic change, the field of road traffic is also making diverse efforts to reduce the emissions of greenhouse gases. Among these, the exhaust gases from vehicles, the so-called main culprit of the greenhouse gases will take place the more as delay and tie-up of vehicles ever take place. Accordingly, as a scheme for reducing the delay & tie-up of vehicles, it's possible to bring up the idea of supply of new facilities and management of the existing facilities; recently, a lot more focus is being put on the management of the existing facilities due to enormous amounts of construction cost. In the midst of growing concern for traffic demand management policy, it's about the time we should do research on the tollbooth metering on the expressway whose research is almost non-existent home and abroad. As a traffic demand management policy coming to happen in case of the management of pay expressway like Japan and Korea, this research analyzed the contents of tollbooth metering, its effect and its subsequent convenience. Especially as a tool for effect analysis, this research made an analysis using VISSIM-a micro-simulation tool. As the tollbooth metering promoted, as a part of green traffic promotion strategy, is expected to contribute to improvement in traffic flow and reduction in carbon emissions, etc. It seems that there needs to be continuous research work on the management plan & revitalization plan for maximization of its effect later as well.

Characterisitics of Redox Reaction of the Magnetite Powder Prepared by Hydrothermal Synthesis (수열합성법으로 합성된 마그네타이트 분말에 대한 산화.환원 특성)

  • Park, Sung Youl;Kang, Min Pil;Rhee, Young Woo;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.751-755
    • /
    • 2005
  • Carbon dioxide, included in the flue gas from the combustion of fossil fuel, was known as a representative green house gas and various removal and utilization technologies of it has been studied for the prevention of global warming. This study was performed as an effort to find out a method to reuse carbon dioxide separated from flue gas by magnetite powder. Magnetite powder was synthesized using various oxidizers and alkalinity controlled aqueous solutions of $FeSO_4{\cdot}7H_2O$ and NaOH at 50, 80, 90, $100^{\circ}C$ and analyzed by XRD and SEM. The analysis results showed that magnetite powder synthesized at higher alkalinity and temperature had crystalline spinel and cubic structure. The reduction by hydrogen and the oxidation by carbon dioxide of synthesized powder were studied by TGA. The results showed that magnetite powder synthesized at low alkalinity and temperature was non-cubical amorphous but crystalline and cubical at high alkalinity and temperature. Comparing magnetite powders synthesized using oxidants(air and oxygen) and nitrogen, magnetite powder using more oxygen containing oxidant synthesized more crystalline magnetite powder. The experimental results of redox reaction of the synthesized magnetite powder showed that the reduction by hydrogen and the oxidation by carbon dioxide were seldom observed below $400^{\circ}C$ and observed well at $500^{\circ}C$. Magnetite powder synthesized at $100^{\circ}C$ and alkalinity(molal concentration ratio of $FeSO_4{\cdot}7H_2O$ to NaOH) of 2.0 using $O_2$ showed the highest reduction of 27.15 wt% and oxidation of 26.73 wt%, especially at reaction temperature of $500^{\circ}C$.

Development of an Automated Design Algorithm for the Longitudinal Members of Oil Tankers based on H-CSR (H-CSR 기반 유조선 종강도 부재의 설계 자동화 알고리즘 개발)

  • Park, Chan-im;Jeong, Sol;Song, Ha-cheol;Na, Seung-soo;Park, Min-cheol;Shin, Sang-hoon;Lee, Jeong-youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.503-513
    • /
    • 2016
  • In order to reduce the green-house gas exhaustion, International Maritime Organization (IMO) has been reinforcing carbon gas regulations. Due to the regulations, a lot of competitions for designing Eco ship in the shipbuilding industry are progressing now. It is faced with the necessity of reducing hull weight by combining automated systems for optimal compartment arrangement with hull structural design. Most researches on optimum structural design method have been consistently in progress and applied to minimize weight and cost of mid-ship section in preliminary ship design stage based on analytical structural analysis method on fixed compartment arrangement. In order to reduce design period and to improve international technical competitiveness by shortening the period of hull structural design and enhancing design accuracy, it has been felt necessity to combine optimized compartment arrangement with optimum design of ship structure based on the international regulations and rules. So in this study, the automated design algorithm for longitudinal members has been developed to combine automated algorithm of compartment arrangement with hull structural design system for oil tanker. The SeaTrust-Hullscan software developed by Korean Register is used to perform ship structural design for mother ship and selected design cases. The effect of weight reduction is verified with comparison of ship weight between mother ship and the cases suggested in this study.