H--CSR 기반 유조선 종강도 부재의 설계 자동화 알고리즘 개발

박찬임'·정솔^{!,†}·송하철²·나승수²·박민철¹·신상훈³·이정렬⁴ 국립목포대학교 대학원 조선해양공학과¹ 국립목포대학교 조선해양공학과² 현대중공업 선박연구소³ (사)한국선급 IT융합연구팀⁴

Development of an Automated Design Algorithm for the Longitudinal Members of Oil Tankers based on H-CSR

Chan-im Park¹·Sol Jeong^{1,†}·Ha-cheol Song²·Seung-soo Na²·Min-cheol Park²·Sang-hoon Shin³·Jeong-youl Lee⁴ Department of Naval Architechture & Ocean Engineering, Graduate School of Mokpo National University¹ Department of Naval Architechture & Ocean Engineering, Mokpo National University² Hyundai Maritime Research Institute, Hyundai Heavy Industries Co., Ltd.³ IT Convergence Technology Research Team, Korean Register⁴

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3,0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to reduce the green-house gas exhaustion, International Maritime Organization (IMO) has been reinforcing carbon gas regulations. Due to the regulations, a lot of competitions for designing Eco ship in the shipbuilding industry are progressing now. It is faced with the necessity of reducing hull weight by combining automated systems for optimal compartment arrangement with hull structural design. Most researches on optimum structural design method have been consistently in progress and applied to minimize weight and cost of mid-ship section in preliminary ship design stage based on analytical structural analysis method on fixed compartment arrangement. In order to reduce design period and to improve international technical competitiveness by shortening the period of hull structural design and enhancing design accuracy, it has been felt necessity to combine optimized compartment arrangement with optimum design of ship structure based on the international regulations and rules. So in this study, the automated design algorithm for longitudinal members has been developed to combine automated algorithm of compartment arrangement with hull structural design for mother ship and selected design cases. The effect of weight reduction is verified with comparison of ship weight between mother ship and the cases suggested in this study.

Keywords : Oil tanker(유조선), Structural design algorithm(구조설계 알고리즘), Automate design algorithm for the longitudinal members(종부재 설계 자동화 알고리즘), Harmonized common structural rules(H-CSR, 통합공통구조규칙)

1. 서 론

국제해사기구(IMO)는 국제사회의 온실가스 저감 노력에 부응 하여 선박의 탄소가스 규제를 논의하고 있다. 이는 지구환경변화 를 막기 위한 온실가스 규제에서 비롯되었으나 해운산업에 있어 서는 고연비화 경쟁을 촉발하는 원인이 되고 있다. 고연비 선박의 개발을 위해 저항성능이 좋은 선형, 효율이 좋 은 엔진뿐만 아니라 최적구획배치 및 구조설계를 통한 구조 경량 화 연계의 필요성이 점증되고 있다.

기존의 선체 구조 설계에 이용될 수 있는 최적 설계 기법에 대 한 연구 (Na, 2005: Shin, et al., 2006: Jo, 2010)는 꾸준히 진 행되어왔으며, 전통적인 구조해석법을 기반으로 한 중앙 횡단면 의 최소 중량 설계 및 건조비 설계 등을 기본 설계에 응용해 왔 다. 이러한 최적 구조설계 기법은 설계의 흐름상 확정된 구획배 치를 기반으로 중량이나 건조비를 최소화할 수 있도록 개발되고 있다. Lee (2012)와 Jeong (2013), 그리고 Yun (2014)는 선박 의 구조 경량화를 위해 구조설계뿐만 아니라 구획배치 최적화를 위해 최근 각 국제협약과 선급규정을 만족하는 구획배치를 자동 으로 수행해주는 구획배치 자동화 시스템에 대한 연구를 수행하 였다.

이러한 연구의 목표는 구획배치 자동화와 구조설계 자동화를 연동하여 최적의 종강도 부재의 구조배치를 찾아 구조 경량화 효 과를 극대화하는 것이며, 이에 대한 연구 (Lee, 2012; Jeong, 2013; Yun, 2014; Moon, 2015)는 국립목포대학교 구조실험실 을 중심으로 꾸준히 수행되었다.

2015년 7월 기존의 CSR-OT (International Association of Classification) (IACS, 2012)와 CSR-BC가 통합되어 통합공통구 조규칙(H-CSR, Harmonized Common Structural Rules)이 발효 되었다 (IACS, 2015). 이에 따라 중대형조선소에서는 통합공통 구조규칙에 기반을 둔 효율적인 구조설계 시스템 개발에 관한 연 구를 진행하고 있다 (Byeon, 2014; Sung & Lee, 2015).

구획배치 설계에 관련 연구는 Lee and Lee (1996)가 초기설 계 단계에서 구획배치 설계기준을 지식 베이스화하여 설계 시 시 행착오를 줄일 수 있는 설계지원 방법을 제시하였고, Byun, et al. (1997)은 선박 설계의 초기 단계에서 선주의 요구조건과 각 종 규정 및 제한조건(분리 평형수 요건)을 바탕으로 화물창 용적, 밸러스트 용적, 복원성 및 트림 조건을 만족하는 구획배치를 결 정하기 위해서 외부 선박계산 프로그램인 SIKOB을 호출하여 결 과 값을 확인하는 구획배치 지원 시스템을 구축하였다. 그러나 이 시스템은 선박의 길이 방향(선수/미부와 중앙평행부)의 분할 만이 가능하여 학문적 성과는 있었으나 실 설계에 적용하는 것은 어려운 실정이다. 이후 함정의 구조 내벽과 접근 통로가 있는 설 비 배치 문제(FLP, Facility Layout Problem)를 해결하기 위해 격 벽 배치를 수행하는 유전자 알고리즘 (Han & Lee, 2000; Han, et al., 2001)을 개발하였으나 내벽과 접근통로 인근의 문제에 국 한하였고, 전체 선박의 배치 문제는 다루지 않았다.

Jeong (2013)과 Yun (2014)은 유조선과 산적화물선에 대한 구획배치 자동화 알고리즘을 개발하였다. 이러한 연구는 구조 강 도 측면에 대한 확실한 예측이 어려웠으나, Moon (2015)이 산적 화물선의 구획배치 자동화 알고리즘과 선체구조설계 자동화 알 고리즘의 연동을 위한 구조설계 알고리즘을 개발하였다.

국립 목포대학교가 제안한 유조선보다 상대적으로 종강도에 취약한 산적화물선의 선체 구조설계 자동화 알고리즘 (Moon, 2015)은 판재의 국부강도 만족시킨 후, 종강도를 평가하여 판재 의 두께를 결정하고, 보강재의 국부 강도 평가를 통해 보강재의 크기를 결정하도록 알고리즘으로 구성하였다.

유조선은 판재와 보강재의 국부강도를 만족할 경우에 자연스 럽게 종강도가 만족되기에 판과 보강재의 국부강도 평가 후에 검 증 단계에서 종강도 평가가 실시된다. 본 연구에서는 이를 반영 하여 종강도 부재의 설계자동화 알고리즘을 구성하고자 한다.

이에, 본 논문에서는 유조선의 구획배치 자동화와 연동이 가 능한 종강도 부재의 설계 자동화 알고리즘을 제시하기 위해 먼저 유조선의 보강재 형상에 대한 특성을 분석하여 중량을 감소시킬 수 있는 보강재 형상 결정 알고리즘을 개발한 후, 유조선 종강도 부재의 치수결정 알고리즘을 개발하고자 한다. 개발한 알고리즘 을 115k 아프리막스(Aframax)와 초대형급 유조선(VLCC)을 대상 으로 구조설계를 수행하여 그 유용성을 확인하고자 한다.

2. 연구내용 및 범위

기 개발된 구획배치 자동화 시스템과 연동하기 위한 종강도 부재의 설계 자동화 알고리즘을 개발하기 위해 115k~318k의 4 척의 유조선(VLCC)을 대상으로 보강재 형상에 따른 항복강도 및 좌굴강도 영향도 조사, 재화중량별 적정 웨브 높이 제한, 적정 플랜지의 폭 제한에 대한 연구를 수행하였으며, 이를 통해 보강 재의 형상 결정 알고리즘을 제안하고자 한다. 또한 TOPY industries LTD.의 Universal Mill Plate(plate bars)의 크기를 반 영하여 플랜지 크기를 결정함으로써 생산성을 고려하고자 한다.

본 논문에서 제안하는 종강도 부재의 설계 자동화 알고리즘을 토대로 한국 선급의 선체구조평가 소프트웨어인 Seatrust-Hullscan 시스템을 이용하여 실적선의 중앙부 형상을 토대로 구 조설계를 수행하였으며, 이를 실적선의 정보와 비교 평가하여 알 고리즘의 유용성을 확인하고자 한다. 이렇게 검증된 종강도 부재 의 설계 자동화 알고리즘은 한국선급의 SeaTrust-HullScan의 부 가 기능으로 추가하고자 한다.

또한, 구획배치 설계 안 별 굽힘 모멘트(total bending moment)의 값을 구하고 (Jeong, 2013; Yun, 2014) 본 논문에서 제안하는 구조설계 알고리즘으로 선정된 구획배치 안에 대해 구 조설계를 수행하여 구획배치에 따른 구조중량의 변화를 비교 평 가하고자 한다.

3. 보강재의 국부강도 평가 알고리즘

플랫바(flat bar) 보강재는 T 형재(T-bar) 보강재 형상 결정 알 고리즘 중 플랜지 크기에 대한 절차를 제외한 나머지 절차에 의 해 보강재의 형상이 결정된다. 앵클(angle) 형상의 보강재는 표 준화된 형상으로 제작되기에, 형상 변경은 보강재의 면적 순으로 정렬된 형상 정보를 기초로 요구 치에 만족할 때까지 점증적으로 형상을 변경하도록 알고리즘을 구성하였다.

이에, 본 논문에서는 T형 보강재에 대해 국부강도 만족하는 범 위 내에서 단면적을 최소화시키는 보강재의 형상 결정 알고리즘 에 대해서만 기술한다. T형 보강재의 형상을 결정하기 위해 Fig.1 의 절차에 따라 보강재 형상에 따른 영향도 평가를 수행하였다.

T형 보강재의 크기는 H-CSR에서 요구하는 단면계수와 좌굴 계수가 만족하는 범위에서 그 형상이 결정되기에, 보강재의 형상 변화(웨브높이, 웨브두께, 플랜지 폭, 플랜지 두께)에 따른 단면 계수(Z)와 좌굴모드에서의 보강재에 의한 파손 계수(SI, Stiffener Induced failure) 및 연관된 판에 의한 파손 계수(PI, associated Plate Inducted failure)의 변화량 분석을 먼저 수행하였다. 보강재의 웨브 높이는 단면계수를 증가시킬 수 있는 가장 긍 정적인 효과를 얻을 수 있지만, H-CSR의 최소두께 요건으로 인 해 웨브 높이 증가에 따른 최소 웨브 두께도 함께 증가하여 단면 적을 필요 이상 커지게 한다. 이러한 현상을 피하기 위해서, 재 화중량별 보강재 웨브 높이 크기를 제한하는 식을 결정하였다. 웨브 높이와의 마찬가지 이유로 플랜지의 폭도 적정 플랜지의 폭 을 제한하는 식을 결정하였다.

The Evaluation	Constrain		Constrain		An algorithm
of impact degree for	equation of		equation of		on
strength according	max. web	Ĺ	max. flange	ļ	determination
to stiffener size	height		breadth		of stiffener

Fig. 1 Procedure developing an algorithm on determination of T-bar stiffener size to evaluate local strength

3.1 보강재 형상에 따른 강도 영향도 평가

3.1.1 상갑판 보강재형상에 따른 강도 영향도 평가

갑판 보강재의 크기는 일반적으로 H-CSR에서 요구하는 좌굴 계수(SI, PI, H-CSR Part1 Chap.6 Sec.5 1.1.2)에 따라 그 형상 이 결정되기에, 보강재 형상 변화에 따른 좌굴계수(PI, SI)가 어 떻게 변화하는지 그 영향도 평가를 수행하였다.

Table 1은 보강재 형상(면적) 변화에 따른 좌굴계수 변화율을 나타낸다. 상갑판은 보강재에 의한 파손 계수(SI)에 의해 보강재 의 형상이 결정됨을 확인하였으며, 일정크기 이상의 웨브 높이를 가질 경우에는 보강재에 의한 파손 계수(SI)에 악영향을 미친다 는 것을 확인하였다. Table 2에서는 보강재 높이에 따른 보강재 의 형상 변화가 보강재에 의한 파손 계수(SI)에 미치는 영향을 조 사하였다. Table 1과 Table 2을 통해, 보강재 면적 변화 대비 좌 굴계수(SI) 변화율은 플랜지 폭, 플랜지 두께, 웨브두께, 웨브높 이 순으로 작아짐을 확인하였다.

3.1.2 갑판 외 보강재 형상에 따른 강도 영향도 평가

갑판 보강재를 제외한 보강재의 형상은 H-CSR에서 요구하는 단면계수(Z, Part1 Chap.5 Sec.1 1.4)에 따라 그 형상이 결정되 기에, 보강재 형상 변화에 따른 단면계수비율(Z ratio)이 어떻게 변화하는지 그 영향도 평가를 수행하였다.

Table 3은 보강재 형상(면적) 변화에 따른 단면계수 변화율을 나타낸다. 보강재 형상 변화 대비 단면계수 변화율은 웨브높이, 플랜지 두께, 플랜지 폭, 웨브두께 순으로 작아짐을 확인하였다.

웨브의 높이가 일정 크기 이상 커질 경우에는 규정의 두께 최 소치 요건(minimum thickness)으로 인해 최소 웨브 두께가 증가 하여 단면적에 악영항을 초래한다. 이에 따라, Table 4의 H-CSR 보강재 두께 최소치 요건들에 의거하여 선박의 크기별 최대 웨브 높이 제한 식을 결정하고자 한다. Table 1 Influence evaluation of stiffeners on the deck

Web height (Size×12+150×12)							
			ΔPI		∆SI		
Size	Longi.	ΡI	/∆Longi.	SI	/△Lonai.		
	area(mm)		area *10000		area *10000		
300	5 400	0.958	_	1 217			
350	6,000	0.934	-0.400	1 145	-1 200		
100	6,600	0.001	-0.350	1 097	-0.800		
400	7 200	0.010	-0.317	1.007	-0.533		
500	7,200	0.034	-0.200	1.003	_0.350		
500	7,000	0.070	-0.300	1.044	-0.330		
000	8,400	0.860	-0.267	1.034	-0.167		
600	9,000	0.844	-0.267	1.034	0.000		
650	9,600	0.830	-0.233	1.048	0.233		
	Average		-0.305	-	-0.402		
	Web	thickne	ss (300×Size	+150×1	12)		
	Lonai.		△PI		∆SI		
Size	area(mm²)	PI	/△Longi.	SI	/△Longi.		
			area *10000		area *10000		
12	5,400	0.958	_	1.217	_		
14	6,000	0.920	-0.633	1.148	-1.150		
16	6,600	0.880	-0.667	1.084	-1.067		
18	7,200	0.852	-0.467	1.037	-0.783		
20	7,800	0.835	-0.283	1.005	-0.533		
22	8,400	0.818	-0.283	0.977	-0.467		
24	9,000	0.803	-0.250	0.950	-0.450		
26	9,600	0.788	-0.250	0.926	-0.400		
	Average		-0.405 -		-0.693		
$\frac{1}{1000} = \frac{1}{1000} = 1$							
	i iun	ye biea		JIZC/ I	<i>L</i>)		
		je pred		012071	∠, ∆SI		
Size	Longi.	PI	△PI /△Longi.	SI	∆SI /∆Longi.		
Size	Longi. area(mm²)	PI	△PI /△Longi. area *10000	SI	△SI /△Longi. area *10000		
Size	Longi. area(mm [*]) 4,800	PI 0.980	△PI /△Longi. area *10000	SI 1.334	△SI /△Longi. area *10000 -		
Size 100 125	Longi. area(mm ²) 4,800 5,100	PI 0.980 0.968	△PI /△Longi. area *10000 - -0.400	SI 1.334 1.268	△SI /△Longi. area *10000 - -2.200		
Size 100 125 150	Longi. area(mť) 4,800 5,100 5,400	PI 0.980 0.968 0.958	△PI /△Longi. area *10000 - -0.400 -0.333	SI 1.334 1.268 1.217	△SI /△Longi. area *10000 - -2.200 -1.700		
Size 100 125 150 175	Longi. area(mi) 4,800 5,100 5,400 5,700	PI 0.980 0.968 0.958 0.947	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367	SI 1.334 1.268 1.217 1.175	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400		
Size 100 125 150 175 220	Longi. area(mm ²) 4,800 5,100 5,400 5,700 6,240	PI 0.980 0.968 0.958 0.947 0.937	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333	SI 1.334 1.268 1.217 1.175 1.141	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133		
Size 100 125 150 175 220 225	Longi. area(m ²) 4,800 5,100 5,400 5,700 6,240 6,300	PI 0.980 0.968 0.958 0.947 0.937 0.928	△PI /△Longi. area *10000 - -0.333 -0.367 -0.333 -0.300	SI 1.334 1.268 1.217 1.175 1.141 1.111	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000		
Size 100 125 150 175 220 225 250	Longi. area(m ²) 4,800 5,100 5,400 5,700 6,240 6,300 6,600	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919	△PI /△Longi. area *10000 - -0.333 -0.367 -0.333 -0.300 -0.300	SI 1.334 1.268 1.217 1.175 1.141 1.111 1.084	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900		
Size 100 125 150 175 220 225 250 275	Longi. area(m ²) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,600	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300	SI 1.334 1.268 1.217 1.175 1.141 1.111 1.084 1.061	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767		
Size 100 125 150 175 220 225 250 275	Longi. area(mr) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,600 6,900	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300	SI 1.334 1.268 1.217 1.175 1.141 1.141 1.084 1.061	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300		
Size 100 125 150 175 220 225 250 275	Longi. area(mm ²) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,600 6,900 Average	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.333 ess (300×12+	SI 1.334 1.268 1.217 1.175 1.141 1.111 1.084 1.061 -	△SI /△Longi. area *10000 -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300		
Size 100 125 150 175 220 225 250 275	Longi. area(mm ²) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,600 6,900 Average Flange	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 e thickn	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.333 ess (300×12+	SI 1.334 1.268 1.217 1.175 1.141 1.111 1.084 1.061 - 150×S	△SI /△Longi. area *10000 -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 Size)		
Size 100 125 150 175 220 225 250 275	Longi. area(m ²) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,900 Average Flange Longi.	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 e thickn	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+	SI 1.334 1.268 1.217 1.175 1.141 1.111 1.084 1.061 - - - - - - - - - - - - -	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 Size) △SI (△Longi		
Size 100 125 150 175 220 225 250 275 Size	Longi. area(mť) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,900 Average Flange Longi. area(mť)	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 e thickn	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+ △PI /△Longi. area *10000	SI 1.334 1.268 1.217 1.175 1.141 1.084 1.061 - - - - - - - - - - - - -	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 Size) △SI /△Longi. area *10000		
Size 100 125 150 175 220 225 250 275 Size	Longi. area(mm ²) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,600 6,900 Average Flange Longi. area(mm ²)	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 e thickn PI	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+ △PI /△Longi. area *10000	SI 1.334 1.268 1.217 1.175 1.141 1.084 1.061 - 150×S SI 1.217	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 Size) △SI /△Longi. area *10000		
Size 100 125 150 175 220 225 250 275 Size 12	Longi. area(mm ²) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,600 6,900 Average Flange Longi. area(mm ²) 5,400	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 e thickn PI 0.958 0.958	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+ △PI /△Longi. area *10000 -	SI 1.334 1.268 1.217 1.175 1.141 1.084 1.061 - - 150×S SI 1.217 1.217	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 Size) △SI /△Longi. area *10000 -		
Size 100 125 150 175 220 225 250 275 Size 12 16 02	Longi. area(mm ²) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,900 Average Flange Longi. area(mm ²) 5,400 6,000	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 e thickn PI 0.958 0.932	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+ △PI /△Longi. area *10000 - - 0.433	SI 1.334 1.268 1.217 1.175 1.141 1.084 1.061 - -150×S SI 1.217 1.123	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 size) △SI /△Longi. area *10000 - - -1.567		
Size 100 125 150 175 220 225 250 275 Size 12 16 20	Longi. area(mť) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,900 Average Flange Longi. area(mť) 5,400 6,000 6,600	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 thickn PI 0.958 0.932 0.909 0.909	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+ △PI /△Longi. area *10000 - - 0.433 -0.383 -0.383	SI 1.334 1.268 1.217 1.175 1.141 1.061 - - 1.061 - SI 1.217 1.217 1.123 1.059	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 Size) △SI /△Longi. area *10000 - - -1.567 -1.067		
Size 100 125 150 175 220 225 250 275 Size 12 16 20 24	Longi. area(mm ²) 4,800 5,100 5,400 5,400 6,240 6,240 6,300 6,600 6,900 Average Flange Longi. area(mm ²) 5,400 6,000 6,600 7,200	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 e thickn PI 0.958 0.958 0.932 0.909 0.888	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+ △PI /△Longi. area *10000 - - -0.433 -0.383 -0.350	SI 1.334 1.268 1.217 1.175 1.141 1.084 1.061 - - - - - - - - - - - - -	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 5ize) △SI /△Longi. area *10000 - - -1.567 -1.067 -0.783		
Size 100 125 150 175 220 225 250 275 Size 12 16 20 24 28	Longi. area(mm ²) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,900 Average Flange Longi. area(mm ²) 5,400 6,000 6,600 7,200 7,800	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 e thickn PI 0.958 0.958 0.958 0.932 0.909 0.888 0.868	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+ △PI /△Longi. area *10000 - - 0.433 -0.383 -0.350 -0.333	SI 1.334 1.268 1.217 1.175 1.141 1.084 1.061 - 150×S SI 1.217 1.123 1.059 1.012 0.973	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 Size) △SI /△Longi. area *10000 - - -1.567 -1.067 -0.783 -0.650		
Size 100 125 150 175 220 225 250 275 Size 12 16 20 24 28 32	Longi. area(mm ²) 4,800 5,100 5,400 5,700 6,240 6,300 6,600 6,900 Average Flange Longi. area(mm ²) 5,400 6,000 6,600 7,200 7,800 8,400	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 e thickn PI 0.958 0.958 0.932 0.909 0.888 0.868 0.850	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+ △PI /△Longi. area *10000 - - -0.433 -0.383 -0.350 -0.333 -0.350	SI 1.334 1.268 1.217 1.175 1.141 1.084 1.061 - 1.061 - 1.50×S SI 1.217 1.123 1.059 1.012 0.973 0.940	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 -0.767 -1.300 Size) △SI /△Longi. area *10000 - - -1.567 -1.067 -0.783 -0.650 -0.550		
Size 100 125 150 175 220 225 250 275 Size 12 16 20 24 28 32 36	Longi. area(mm ⁷) 4,800 5,100 5,400 6,240 6,300 6,600 6,600 6,900 Average Flange Longi. area(mm ⁷) 5,400 6,000 6,600 7,200 7,800 8,400 9,000	PI 0.980 0.968 0.958 0.947 0.937 0.928 0.919 0.910 2 thickn PI 0.958 0.932 0.932 0.909 0.888 0.868 0.850 0.832	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+ △PI /△Longi. area *10000 - - -0.433 -0.383 -0.350 -0.333 -0.300 -0.300	SI 1.334 1.268 1.217 1.175 1.141 1.111 1.084 1.061 - - 150×S SI 1.217 1.123 1.059 1.012 0.973 0.940 0.911	△SI /△Longi. area *10000 - -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 -0.767 -1.300 Size) △SI /△Longi. area *10000 - - -1.567 -1.067 -0.783 -0.650 -0.550 -0.483		
Size 100 125 150 175 220 225 250 275 Size 12 16 20 24 28 32 36 40	Longi. area(mm ²) 4,800 5,100 5,400 6,240 6,300 6,600 6,600 6,900 Average Flange Longi. area(mm ²) 5,400 6,600 7,200 7,800 8,400 9,000 9,600	PI 0.980 0.968 0.958 0.947 0.928 0.919 0.910 0.910 0.910 0.910 0.958 0.932 0.909 0.888 0.868 0.850 0.832 0.816	△PI /△Longi. area *10000 - -0.400 -0.333 -0.367 -0.333 -0.300 -0.300 -0.300 -0.300 -0.333 ess (300×12+ △PI /△Longi. area *10000 - - -0.433 -0.383 -0.350 -0.333 -0.300 -0.300 -0.300 -0.300 -0.300 -0.267	SI 1.334 1.268 1.217 1.175 1.141 1.084 1.061 - -150×S SI 1.217 1.123 1.059 1.012 0.973 0.940 0.911 0.885	△SI /△Longi. area *10000 -2.200 -1.700 -1.400 -1.133 -1.000 -0.900 -0.767 -1.300 ize) △SI /△Longi. area *10000 - - -1.567 -1.067 -0.783 -0.650 -0.550 -0.483 -0.433		

Table 2 Influence evaluation of stiffeners on the deck according to web height

Web thickness										
	350×	Size+	400×	Size+	450×	Size+				
	150	×12	150	×12	150	×12				
Size	SI	Rate	SI	Rate	SI	Rate				
12	1.145	-	1.097	_	1.065	_				
14	1.078	-0.957	1.031	-0.825	0.998	-0.744				
16	1.017	-0.871	0.972	-0.737	0.939	-0.656				
18	0.972	-0.643	0.928	-0.550	0.896	-0.478				
20	0.942	-0.429	0.898	-0.375	0.865	-0.344				
22	0.914	-0.400	0.870	-0.350	0.838	-0.300				
24	0.889	-0.357	0.845	-0.313	0.812	-0.289				
26	0.865	-0.343	0.821	-0.300	0.788	-0.267				
Avg.	_	-0.571	-	-0.493	_	-0.440				
	I	Fla	ange bre	adth		1				
	350>	×12+	400>	×12+	450>	×12+				
	Size	×12	Size	×12	Size	×12				
Size	SI	Rate	SI	Rate	SI	Rate				
100	1.238	-	1.186	-	1.169	-				
125	1.186	-1.733	1.134	-1.733	1.104	-2.167				
150	1.145	-1.367	1.097	-1.233	1.065	-1.300				
175	1.111	-1.133	1.067	-1.000	1.035	-1.000				
200	1.083	-0.933	1.041	-0.867	1.011	-0.800				
225	1.058	-0.833	1.019	-0.733	0.990	-0.700				
250	1.036	-0.733	0.999	-0.667	0.971	-0.633				
275	1.016	-0.667	0.982	-0.567	0.954	-0.567				
Avg.	-	-1.057	-	-0.971	-	-1.024				
		Flai	nge thicl	kness						
	350>	×12+	400>	×12+	450>	×12+				
	150>	<size< td=""><td>150></td><td><size< td=""><td>150></td><td><size< td=""></size<></td></size<></td></size<>	150>	<size< td=""><td>150></td><td><size< td=""></size<></td></size<>	150>	<size< td=""></size<>				
Size	SI	Rate	SI	Rate	SI	Rate				
12	1.145	_	1.097	_	1.065	_				
16	1.071	-1.233	1.036	-1.017	1.010	-0.917				
20	1.019	-0.867	0.991	-0.750	0.969	-0.683				
24	0.979	-0.667	0.954	-0.617	0.936	-0.550				
28	0.945	-0.567	0.923	-0.517	0.907	-0.483				
32	0.915	-0.500	0.896	-0.450	0.881	-0.433				
36	0.888	-0.450	0.871	-0.417	0.858	-0.383				
40	0.864	-0.400	0.849	-0.367	0.836	-0.367				
Avg.	_	-0.790	-	-0.669	-	-0.590				

*Rate = \triangle SI / \triangle Longitudinal area *10000

Table	3	Influence	evaluation	of	stiffeners	except	the
		deck stiff	eners				

Web height (Size×12+150×12)							
Size	Longi. area(mi)	Z ratio(%)	Z ratio /Section area*100				
300	5,400	59.8	1.107				
350	6,000	73.5	1.225				
400	6,600	88.4	1.339				
450	7,200	104.2	1.447				
500	7,800	121.1	1.553				
550	8,400	139.0	1.655				
600	9,000	158.0	1.756				
	Average		1.440				
	Web thickness (3	300×Size+1	50×12)				
Size	Longi. area(mr)	Z ratio(%)	Z ratio /Section area*100				
12	5,400	59.8	1.107				
14	6,000	64.4	1.073				
16	6,600	69	1.045				
18	7,200	73.5	1.021				
20	7,800	77.8	0.997				
22	8,400	82.1	0.977				
	Average	1	1.037				
	Flange breadth	(300×12+Si	ze×12)				
Size	Longi. area(mm²)	Z ratio(%)	Z ratio /Section area*100				
150	5,400	59.80	1.107				
200	6,000	72.00	1.200				
250	6,600	84.10	1.274				
300	7,200	96.20	1.336				
	Average		1.229				
	Flange thickness	(300×12+1	50×Size)				
Size	Longi. area(mm)	Z ratio(%)	Z ratio /Section area*100				
12	5,400	59.80	1.107				
16	6,000	75.20	1.253				
20	6,600	90.60	1.373				
24	7,200	105.80	1.469				
28	7,800	120.90	1.550				
32	8,400	135.80	1.617				
Average 1.395							

	· ····· ······························
Rule	Application requirements
Minimum thickness (H-CSR Part1 Chap.6 Sec.3 2.1)	$\begin{split} T_{web-min} &= 3.5 + 0.015L_2 \\ \star L_2 \text{: Rule length}(L_2 < 300m) \end{split}$
Slenderness requirement (H-CSR Part1 Chap.8 Sec.2 3.1)	$\begin{split} T_{web-slen.} &= \frac{H_{web}}{C_w} \sqrt{\frac{R_{eH}}{235}} \\ \star H_{web}: \text{ Web height} \\ \star C_w: \text{ Slenderness coefficient} \\ (\text{T-bars: 75}) \\ \star R_{eH}: \text{ Specified minimum yield stress} \\ & \text{of the material of the} \\ & \text{attached plate} \end{split}$
Lateral pressure requirement (H-CSR Part1 Chap.6 Sec.5 1.1)	$\begin{split} T_{web-lateral} &= \frac{f_{shr} \times P \times s \times l_{shr}}{d_{shr} \times \chi \times C_t \times \tau_{eH}} \\ \star \ f_{shr} \colon \text{Shear force distribution} \\ & \text{factor} \\ \star \ P: \ \text{Design pressure} \\ \star \ s \colon \text{Stiffener spacing} \\ \star \ l_{shr}, \ d_{shr} \colon \text{Effective shear} \\ & \text{span/depth} \\ \star \ \chi \colon \text{Coefficient} \\ \star \ C_t \colon \text{Permissible shear stress} \\ & \text{coefficient} \\ \star \ \tau_{eH} \colon \text{Specified shear yield stress} \end{split}$

Table 4 Minimum net thickness requirements for web

3.2 보강재의 웨브 최대 높이

3.2.1 초대형 유조선 이하급 유조선의 보강재 최대 높이

Table 5에서는 아프라막스(AFRA MAX, Average Freight Rate Assessment Maximum) 및 수에즈막스(SUEZ MAX, Suez Canal Maximum)급 유조선의 웨브 두께가 면외압력에 대한 두께요건 (lateral pressure)의 영향이 없고, 두께 최소치 요건(minimum thickness)과 세장비 두께요건(slenderness requirement)에 지배 를 받음을 확인하였다. 또한, 초대형 유조선 이하급 유조선의 웨 브높이는 웨브의 두께가 선박의 길이에 영향을 받는 두께 최소치 요건(minimum thickness)에서 좌굴강도의 영향을 받는 세장비두 께 요건(slenderness requirement)에 의해 결정될 때, 단면계수 대비 최소 단면적을 가짐을 확인하였다. 초대형 유조선은 재화중 량이 200k(ton)에서 320k(ton)까지의 선형의 선박을 말한다.

이에 따라, 재화중량(DWT, Deadweight)이 200K(ton)이하 유 조선의 웨브 높이(H_{web}) 제한 식은 식 (1)과 같으며, 이를 Table 4에 의거하여 정리하면 식 (2)와 같다.

$$T_{web-min} < T_{web-slenderness} (DWT < 200k)$$
(1)

$$H_{web} < C_W (3.5 + 0.015 L_2) \sqrt{\frac{235}{R_{eH}}} (DWT < 200k)$$
 (2)

Table 5 Web thickness according to web height under VLCC

	115k AFRA MAX										
			$\overline{T_{net}}~({ m mm})$								
No	H_{web} (mm)	Minimum thickness ($T_{web-min}$)	Slenderness ($T_{web-slen.}$)	Lateral pressure ($T_{web-lateral}$)	T _{corr} . (mm)	$T_{gross} \\ (\rm mm)$					
1	350	7.25	5.40	6.30	3.00	11.00					
2	400	7.25	6.17	5.56	3.00	11.00					
3	450	7.25	6.95	4.98	3.00	11.00					
4	500	7.25	7.72	4.51	3.00	11.00					
5	550	7.25	8.49	4.11	3.00	12.00					
6	600	7.25	9.26	3.79	3.00	13.00					
7	650	7.25	7.25 10.03 3		3.00	13.00					
			165k SUEZ	MAX							
			$T_{net}~({ m mm})$								
No	H_{web} (mm)	Minimum thickness (T _{web-min})	Slenderness ($T_{web-slen.}$)	Lateral pressure $(T_{web-lateral})$	T _{corr} . (mm)	T_{gross} (mm)					
1	350	7.42	5.45	7.01	3.00	11.00					
2	400	7.42	6.22	6.18	3.00	11.00					
3	450	7.42	6.99	5.53	3.00	11.00					
4	500	7.42	7.76	5.00	3.00	11.00					
5	550	7.42	8.54	4.56	3.00	12.00					
6	600	7.42	9.31	4.19	3.00	13.00					
7	650	7.42	10.08	3.88	3.00	13.00					

* T_{net} : Net thickness with full corrosion reduction

* $T_{corr.}$: Corrosion addition, $T_{gross} = T_{net} + T_{corr.}$

3.2.2 초대형 유조선의 보강재 최대 높이

Table 6에서는 초대형급 유조선(VLCC, Very Large Crude oil Carrier)의 웨브의 두께가 최소치 요건(minimum thickness)의 영 향이 없고, 면외압력 두께요건(lateral pressure requirement)과 세장비 두께요건(slenderness requirement)에 지배를 받음을 확 인하였다.

웨브의 높이가 커짐에 따라 웨브의 두께가 함께 커질 경우 단 면적에 악영향을 준다. 따라서 웨브 높이가 550(m)일 때 최소 두께(면적)를 가지지만 웨브의 높이와 두께가 국부강도에 미치는 영향을 고려하였을 때, 웨브의 길이의 커짐에 비해 두께의 증가 가 없는 웨브 높이인 650(mm)에서 최적의 값을 가짐을 확인하였 다. 이에 따라, 재화중량이 200k(ton)이상 유조선의 웨브 높이 (H_{web})는 식 (3)과 같이 제한하였다.

$$H_{web} < 650 \ (DWT \ge 200k)$$
 (3)

Table 6 Web thickness according to web height in VLCC

	260k VLCC										
			$T_{net}~({ m mm})$								
No	H_{web} (mm)	Minimum thickness ($T_{web-min}$)	Slenderness ($T_{web-slen.}$)	Lateral pressure $(T_{web-lateral})$	T _{corr.} (mm)	$\begin{array}{c} T_{gross} \\ ({\rm mm}) \end{array}$					
1	400	8.00	6.17	10.12	3.00	13.00					
2	450	8.00	6.95	9.06	3.00	12.00					
3	500	8.00	7.72	8.19	3.00	11.00					
4	550	8.00	8.49	7.48	3.00	12.00					
5	600	8.00	9.26	6.88	3.00	13.00					
6	650	8.00	10.03	6.38	3.00	13.00					
7	700	8.00	10.81	5.93	3.00	14.00					
8	750	8.00	11.58	4.50	3.00	15.00					
9	800	8.00	12.35	5.21	3.00	16.00					
			318k VL	.CC							
			$318 { m k~VL}$ T_{net} (mm)	CC							
No	H_{web} (mm)	Minimum thickness (T _{web-min})	318 k VL T_{net} (mm) Slenderness ($T_{web-slen.}$)	CC Lateral pressure (T _{web-lateral})	$T_{corr.}$ (mm)	T_{gross} (mm)					
No 1	H _{web} (mm) 400	Minimum thickness (<i>T_{web-min}</i>) 8.00	318 k VL T_{net} (m) Slenderness ($T_{web-slen.}$) 6.17	CC Lateral pressure (<i>T_{web-lateral}</i>) 11.58	<i>T_{corr.}</i> (mm) 3.00	T _{gross} (mm) 15.00					
No 1 2	H _{web} (mm) 400 450	Minimum thickness (<i>T_{web-min}</i>) 8.00 8.00	$\begin{array}{c} 318 \text{k VL} \\ T_{net} \text{ (mm)} \\ \\ \text{Slenderness} \\ (T_{web-slen.}) \\ \hline 6.17 \\ \hline 6.95 \end{array}$	CC Lateral pressure (<i>T_{web-lateral}</i>) 11.58 10.41	<i>T_{corr.}</i> (mm) 3.00 3.00	T _{gross} (mm) 15.00 14.00					
No 1 2 3	H _{web} (mm) 400 450 500	Minimum thickness (<i>T_{web-min}</i>) 8.00 8.00 8.00	318 VL T_{net} (mm) Slenderness ($T_{web-slen.}$) 6.17 6.95 7.72	CC Lateral pressure (<i>T_{web-lateral}</i>) 11.58 10.41 9.45	T _{corr.} (mm) 3.00 3.00 3.00	T _{gross} (mm) 15.00 14.00 13.00					
No 1 2 3 4	H _{web} (mm) 400 450 500 550	Minimum thickness (<i>T_{web-min}</i>) 8.00 8.00 8.00 8.00	$\begin{array}{c} 318 {\rm k} {\rm VL} \\ T_{net} ({\rm m}) \\ {\rm Slenderness} \\ (T_{web-slen.}) \\ 6.17 \\ 6.95 \\ 7.72 \\ 8.49 \end{array}$	CC Lateral pressure (<i>T_{web-lateral}</i>) 11.58 10.41 9.45 8.65	T _{corr.} (mm) 3.00 3.00 3.00 3.00	T _{gross} (mm) 15.00 14.00 13.00 12.00					
No 1 2 3 4 5	H _{web} (mm) 400 450 550 600	Minimum thickness (<i>T_{web-min}</i>) 8.00 8.00 8.00 8.00 8.00	$\begin{array}{c} 318 \text{k VL} \\ T_{net} \ (\text{mm}) \\ \text{Slenderness} \\ (\ T_{web-slen.} \) \\ \hline 6.17 \\ \hline 6.95 \\ \hline 7.72 \\ \hline 8.49 \\ \hline 9.26 \end{array}$	CC Lateral pressure (<i>T_{web-lateral}</i>) 11.58 10.41 9.45 8.65 7.98	T _{corr.} (mm) 3.00 3.00 3.00 3.00 3.00 3.00	T _{gross} (mm) 15.00 14.00 13.00 12.00 13.00					
No 1 2 3 4 5 6	H _{web} (mm) 400 450 500 550 600 650	Minimum thickness (<i>T_{web-min}</i>) 8.00 8.00 8.00 8.00 8.00 8.00 8.00	$\begin{array}{c} 318 \text{k VL} \\ T_{net} \ (\text{mm}) \\ \text{Slenderness} \\ (T_{web-slen.} \) \\ \hline 6.17 \\ \hline 6.95 \\ 7.72 \\ \hline 8.49 \\ \hline 9.26 \\ \hline 10.03 \end{array}$	CC Lateral pressure (<i>T_{web-lateral}</i>) 11.58 10.41 9.45 8.65 7.98 7.41	T _{corr.} (mm) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	T _{gross} (mm) 15.00 14.00 13.00 12.00 13.00 13.00					
No 1 2 3 4 5 6 7	H _{web} (mm) 400 450 500 550 600 650 700	Minimum thickness (<i>T_{web-min}</i>) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.0	$\begin{array}{c} 318 \text{k VL} \\ T_{net} \ (\text{mm}) \\ \\ \text{Slenderness} \\ (T_{web-slen.} \) \\ \hline 6.17 \\ \hline 6.95 \\ \hline 7.72 \\ \hline 8.49 \\ \hline 9.26 \\ \hline 10.03 \\ \hline 10.81 \\ \end{array}$	CC Lateral pressure ($T_{web-lateral}$) 11.58 10.41 9.45 8.65 7.98 7.41 6.90	T _{corr.} (mm) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	T _{gross} (mm) 15.00 14.00 13.00 13.00 13.00 14.00					
No 1 2 3 4 5 6 7 8	H _{web} (mm) 400 450 500 550 600 650 700 750	Minimum thickness (<i>T_{web-min}</i>) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.0	$\begin{array}{c} 318 \text{k VL} \\ T_{net} \ (\text{m}) \\ \text{Slenderness} \\ (\ T_{web-slen.} \) \\ \hline 6.17 \\ \hline 6.95 \\ \hline 7.72 \\ \hline 8.49 \\ \hline 9.26 \\ \hline 10.03 \\ \hline 10.81 \\ \hline 11.58 \end{array}$	CC Lateral pressure (<i>T_{web-lateral}</i>) 11.58 10.41 9.45 8.65 7.98 7.41 6.90 6.47	T _{corr.} (mm) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	T _{gross} (mm) 15.00 14.00 13.00 13.00 13.00 14.00 15.00					

3.3 보강재의 플랜지 최대 폭

플랜지의 폭이 일정 크기 이상 커질 경우에는 규정의 두께 최 소치 요건으로 인해 최소 웨브 두께가 증가하여 단면적에 악영향 을 초래한다. 따라, Table 7의 H-CSR 보강재 두께 최소치 요건 들에 의거하여 선박의 크기별 최대 플랜지 폭 제한 식을 결정하 고자 한다.

Table 8에서와 같이, 플랜지의 두께가 최소치 요건(minimum thickness)에서 세장비두께 요건(slenderness requirement)에 의 해 결정될 때, 단면계수 대비 최소 단면적을 가짐을 확인하였다.

이에 따라, 플랜지의 폭(B_{flange}) 제한 식은 식 (4)과 같으며, 이 를 Table 7에 의거하여 정리하면 식 (5)와 같다.

$$Roun\,dup(T_{flange-min}, 0.1) < T_{flange-slenderness} \tag{4}$$

$$B_{flange} < 2C_f^* Roun \, dup \big(3.5 + 0.015L_2, 0.1\big) \sqrt{\frac{235}{R_{eH}}} \tag{5}$$

- 여기서, Roundup(X, 0.1): X값을 소수점 첫 번째 자리하는 올 림 하는 함수
- Table 7 Minimum net thickness requirements for flange

nange	
Rule	Application requirements
Minimum thickness (H-CSR Part1 Chap.6 Sec.3 2.1)	$\begin{split} T_{flange-min} &= 3.5 + 0.015L_2 \\ \star \ L_2 \vdots \ \text{Rule length} \ (L_2 < 300m) \end{split}$
Slenderness requirement (H-CSR Part1 Chap.8 Sec.2 3.1)	$\begin{split} T_{flange-slen.} &= \frac{B_{flange}/2}{C_f} \sqrt{\frac{R_{eH}}{235}} \\ \star B_{flange} \text{: Flange breadth} \\ \star C_f \text{: Slenderness coefficient (T-bars: 12)} \\ \star R_{eH} \text{: Specified minimum yield stress} \\ & \text{of the material of the attached} \\ & \text{plate} \end{split}$

Table 8 Flange thickness according to flange breadth

		115k A	FRA MAX		
		T_{net}	(mm)		
No	$B_{flange} \ ({ m mm})$	Minimum thickness (_{Tweb-min})	Slenderness ($T_{web-slen.}$)	$T_{corr.}$ (mm)	T_{gross} (mm)
1	125	7.24	5.21	3.00	11.00
2	150	7.24	6.25	3.00	11.00
3	175	7.24	7.29	3.00	11.00
4	200	7.24	8.33	3.00	12.00
5	225	7.24	9.38	3.00	13.00
6	250	7.24	10.42	3.00	14.00
		165k S	UEZ MAX		
		T_{net}	(mm)		
No	$B_{flange} \ ({ m mm})$	Minimum thickness (T _{web-min})	Slenderness ($T_{web-slen.}$)	$T_{corr.}$ (mm)	T_{gross} (mm)
1	125	7.42	5.21	3.00	11.00
2	150	7.42	6.25	3.00	11.00
3	175	7.42	7.29	3.00	11.00
4	200	7.42	8.33	3.00	12.00
5	225	7.42	9.38	3.00	13.00
6	250	7.42	10.42	3.00	14.00
		VLCC (2	200~320k)		
		T_{net}	(mm)		
No	$B_{flange} \ ({ m mm})$	Minimum thickness (_{T_{web-min})}	Slenderness ($T_{web-slen.}$)	$T_{corr.}$ (mm)	T_{gross} (mm)
1	125	8.00	5.21	3.00	11.00
2	150	8.00	6.25	3.00	11.00
3	175	8.00	7.29	3.00	11.00
4	200	8.00	8.33	3.00	12.00
5	225	8.00	9.38	3.00	13.00
6	250	8.00	10.42	3.00	14.00

박찬임·정솔·송하철·니승수·박민철·신상훈·이정렬

3.4 보강재의 형상 결정 알고리즘

보강재 형상 결정 알고리즘은 좌굴강도에 민감한 상갑판 보강 재와 항복강도(단면계수)에 민감한 그 외 보강재의 형상 결정 알 고리즘을 나누어 구성한다.

3.4.1 상갑판 보강재의 형상 결정 알고리즘

상갑판의 보강재의 형상 결정 알고리즘은 Fig. 2와 같다. 상갑 판 보강재는 좌굴강도에 민감하여 형상의 결정에 좌굴계수가 지 배적이다. 이에, 보강재의 형상 알고리즘은 보강재의 면적 대비 좌굴계수의 변화율을 반영하여 보강재 형상 결정 알고리즘을 구 성한다. 변화율에서 플랜지 폭이 가장 큰 영향을 미치는 것을 확 인하였지만, 웨브 및 플랜지의 최소 두께는 웨브의 높이와 플랜 지의 폭에 따라 결정 되므로, 초기 웨브의 높이와 플랜지의 폭을 먼저 결정하고자 한다. 이를 반영한 알고리즘 순서는 웨브의 높 이에 따른 플랜지의 폭, 플랜지의 두께 그리고 웨브의 두께이다.

$$\begin{split} T_{web-rule} &= max \big(\, T_{web-min}, \, T_{web-slen}, \, T_{web-latteral} \big) + T_{corr.} \\ T_{flange-rule} &= max \big(\, T_{flange-min}, \, T_{flange-slen.} \big) + T_{corr.} \\ \mathsf{URB}(\mathsf{X}): \, \mathsf{X보다} \, \exists \mathcal{H} \sqcup \, \texttt{같e} \, \mathsf{Table} \, 9 \texttt{의} \, \exists \mathcal{H} \mathsf{N} \, \texttt{X} \\ \mathsf{URT}(\mathsf{X}): \, \mathsf{X보r} \, \exists \mathcal{H} \sqcup \, \texttt{같e} \, \mathsf{Table} \, 10 \texttt{e} \, \exists \mathcal{H} \mathsf{N} \, \texttt{Fm} \\ \mathsf{Fig. 2 Decision algorithm for stiffener size on deck} \end{split}$$

Table 9 Flange breadth of universal mill plate in TOPY industries LTD.

No	1	2	3	4	5	6
B_{flange}	125	150	180	200	230	250

Table 10 Flange thickness of universal mill plate in TOPY industries LTD.

No	1	2	3	4	5	6	7	8	9	10	11	12
T_{flange}	12	14	16	18	19	20	22	24	25	26	28	30

웨브 높이는 선측 보강재와 갑판 보강재의 여유 공간 확보 및 Table 1에서 확인한 것과 같이 일정크기 이상의 웨브 높이를 가 질 경우에는 보강재에 의한 파손 계수에 악영향을 미치기에 최대 높이를 450(mm)로 제한한다. 이 때 초기 웨브 높이는 사용자가 입력한 값으로 하며, 초기 플랜지 폭은 TOPY industries LTD.의 Universal Mill Plate(plate bars)의 최소치인 125(mm)와 H-CSR의 최소 플랜지의 폭 요구치(0.25($H_{web} + T_{corr.}$), Part1 Chap.8 Sec.3 1.2)의 값 중 큰 값이 Table 9의 값보다 크거나 같은 값으 로 취한다. 초기 웨브 두께는 최소 규정 요구치로 하며, 초기 플 랜지 두께는 최소 규정 요구치보다 크거나 같은 TOPY industries LTD.의 Universal Mill Plate(plate bars)의 크기로 결정한다.

웨브 높이에 따른 초기 보강재의 형상을 결정한 후에는 보강 재의 면적 대비보강재에 의한 파손 계수(SI) 변화량이 가장 큰 플 랜지의 폭을 변경시킨다. 플랜지의 최대 폭 최댓값인 250(mm)까 지이며, 변경 순서는 Table 9과 같다.

플랜지 폭을 지정한 최대 폭까지 증가된 후에도 항복강도와 좌굴강도에 만족하지 않을 경우에는 플랜지의 두께를 30(mm)까지 변경시킨다. 변경 순서는 Table 10과 같다.

플랜지 두께를 지정한 최대 두께까지 증가된 후에도 항복강도 와 좌굴강도에 만족하지 않을 경우에는 웨브 두께를 0.5(m) 단위 로 해당 웨브의 최소 규정 요구치보다 2(m) 높은 값까지 증가시 킨다. 이는 보강재의 면적 측면에서 웨브 높이를 증가시키는 것보 다 웨브 두께를 약 2(m) 증가시키는 것이 유리하기 때문이다.

플랜지 두께를 지정한 최대 두께까지 증가된 후에도 항복강도 와 좌굴강도에 만족하지 않을 경우 웨브의 높이를 25(m) 증가시 키고, 그 외 보강재의 치수에 대해서는 초기화하여 앞서 설명한 과정을 반복한다.

3.4.2 상갑판 외 보강재의 크기 결정 알고리즘

상갑판 외 보강재의 형상 결정 알고리즘은 Fig. 3과 같다. 상 갑판 외 보강재들은 항복강도에 민감하여 형상의 결정에 단면계 수비율이 지배적이다. 이에, 단면적 대비 단면계수의 변화율을 반영하여 높은 웨브의 높이에 따른 플랜지의 폭, 플랜지의 두께 그리고 웨브의 두께 순으로 보강재의 형상 결정한다.

웨브 최대 높이는 위에서 결정한 보강재의 웨브 최대 높이 식 (3)에 의거하여 결정되며, 증분 량은 25(m)이다. 그 외 보강재의 치수는 상갑판의 초기 보강재 치수와 동일하다. 웨브의 높이가 최대 높이까지 증가된 후에도 항복강도와 좌굴 강도에 만족하지 않을 경우에는 플랜지의 두께, 플랜지의 폭 그 리고 웨브의 두께 순으로 제한조건에 만족하는 범위내에서 치수 를 변경한다. 플랜지의 최댓값은 3.3의 식 (5)에 의거한다.

Fig. 3 Decision algorithm for stiffecner size except deck stiffeners

4. 종강도 부재의 설계 자동화 알고리즘

Fig. 4는 유조선의 종강도 부재의 설계 자동화 알고리즘이다. 초기 보강재 크기를 기초로 판재 국부 강도 평가를 통한 판재 두께를 결정한다. 이때 항복강도와 좌굴 강도의 규정 기준을 확 인하고, 만족하지 않은 판재의 두께를 0.5(m)씩 증가시킨다.

그 후, 보강재의 국부 강도 평가를 통해 보강재의 크기를 결정 한다. 선저(Bottom), 이중저(Inner bottom), 호퍼(Hopper), 선측 (Side), 이중선측(Inner side), 종격벽(Longi. BHD), 갑판(Deck) 순으로 판재와 마찬가지로 항복강도와 좌굴 강도의 규정 기준을 확인한다. 기준에 만족하지 않은 보강재는 위치별 보강재의 크기 결정 알고리즘에 의해 보강재 크기를 변경한다.

종료조건은 현재의 판의 두께가 이전 단계의 판의 두께와 동 일함을 판단하고 동일할 경우 종강도 결정 알고리즘을 수행하고 동일하지 않을 경우 판재의 국부강도 평가를 통해 플랜지 두께 결정 알고리즘 이하 과정을 반복 수행한다. 유조선의 경우, 판재 및 보강재의 국부강도를 만족시킬 때에 는, 자연스럽게 종강도가 만족되기 때문에 종강도 결정 알고리즘 은 검증하는 단계에서 실시된다. 이에 따라, 종강도 평가는 판재 와 보강재의 국부강도 평가가 완료된 후 실시한다.

유조선은 이중저로 설계되기 때문에 일반적으로 종강도는 갑 판에서 부족하다. 따라서, 본 논문에서 제안하는 알고리즘은 갑 판에서의 단면계수를 확인하여 종강도를 평가하게 된다. 종강도 가 만족하지 않을 경우에는 갑판의 두께를 0.5 빠증가하고 판재 와 보강재의 국부강도 평가를 재 수행한다. 이 과정은 종강도가 만족될 때까지 반복 수행한다.

Fig. 4 Automated design algorithm according to longitudinal strength member

5. 적용평가

앞서 설명한 종부재의 설계 자동화 알고리즘은 한국선급의 SeaTrust-HullScan에서 실행 가능하며, Fig. 5는 이를 위한 실행 화면이다. 사용자는 [Optimization of scantling] 버튼을 클릭하 여 [Optimization] 다이얼로그를 활성화 시킨다. 그 후, 시스템 내에서 자동으로 부재의 치수를 결정하기 위한 판과 보강재를 선 택하고, 갑판에서 목표로 하는 종강도의 비율과 한 부재 당 최대 반복계산의 횟수 제한 그리고 최대 갑판의 두께를 지정하고 [Calculation] 버튼을 클릭하여 자동화를 실시한다.

Fig. 5 Execution screen of SeaTrust-HullScan for executing the automated algorithm

5.1 아프라막스급 유조선의 구조설계 결과

5.1.1 종강도 평가

본 논문에서 제안한 알고리즘을 이용하여 115k 아프라막스를 대상으로 구조설계를 수행한 결과 Table 11과 같은 종강도 결과 를 얻었다. 갑판의 단면계수는 규칙 요구치보다 15% 정도 높게 종강도를 만족하였으며, 이때 횡 단면적은 54,734(㎡)를 갖는다.

5.1.2 유용성 검증

본 논문에서 제안한 종부재의 설계 자동화 알고리즘의 유용성

을 검증하기 위해 Table 12과 같이 유조선의 공통구조규칙 (CSR-OT : Common Structure Rule for Oil Tanker)이 적용된 실적선의 중앙부 형상 정보와 비교 평가하였다. 그 결과 본 논문 에서 제안한 알고리즘이 3.5% 단면적이 증가함을 확인하였다.

학계 발표에 따르면 공통구조규칙 대비 통합공통구조규칙의 설계중량이 3% 내외 높다고 알려진 점을 감안할 때 본 논문에서 제안한 알고리즘이 합리적임을 확인하였다.

				1 11 11 II	
Table 11	The	result	OŤ	longitudinal	strength

Descrip	ition	Actual value	Rule value	Status(%)
Cross sectior	n area(cm²)	54,734	-	_
Natural ax	kis (m)	9.27	-	_
Section modulus(㎡)	Bottom	41.97	39.49	106.2
	Deck	33.19	30.81	107.7
Moment of i	nertia(m ⁴)	389.18	296.19	131.4

Table	12	The	info	ormatior	n of	mic	d-ship	Se	ection
		betwe	een	mother	ship	and	design	ed	ship

Item		Mother ship (CSR-OT)	Designed ship (H-CSR)	
Design	D/B	2.39	2.39	
(m)	D/S	2.20	2.20	
S.W.B.M (kN*m)	Hog.	2,755,874	2,755,874	
	Sag.	-2,180,881	-2,180,881	
Cargo volume (m ³)		131,566	131,566	
Neutral axis (m)		9.30	9.27	
Deck ratio (%)		101.9	107.7	
Section area (m ²)		52,830	54,724	
Difference with mother ship (%)		_	3.46	

5.2 초대형급 유조선의 구획배치에 따른 구조설계

목포대학교와 한국선급이 공동으로 개발한 구획배치 자동화 시스템 (Song, et al., 2013)을 활용하여 318k 초대형급 유조선 (MLCC)를 대상으로 오차범위 0.03% 이내로 거의 동일한 화물창 용적을 갖는 경우에서 굽힘 모멘트 변화에 따른 중앙 단면적의 변화량을 비교 평가하였다. 그 결과 Table 13과 같이 정수 중 굽 힘 모멘트(S.W.B.M, Still Water Bending Moment)가 감소함에 따라 단면적도 감소함을 확인하였다.

이를 통해 본 논문에서 제안한 알고리즘을 기 개발된 구획배 치 자동화 시스템과 연동하고 구획배치 자동화 시스템의 설계변 수 다양화 및 화물창 용적 감소를 위한 설계를 실시한다면, 보다 더 중량을 절감하는 설계가 가능할 것으로 사료된다.

Item		Designed ship 1	Designed ship 2	Designed ship 3		
Design variable (m)	D/B	3.0 3.3		3.6		
	D/S	3.4	2.9	2.5		
S.W.B.M (kN*m)	Hog.	7,421,039	7,546,146	7,602,466		
	Sag.	-4,919,411	-5,136,428	-5,262,604		
Cargo volume (m ³)		361,322	361,876	361,320		
Section area ($\ensuremath{\texttt{m}}^{\ensuremath{\texttt{s}}}$)		100,719	100,845	100,917		

Table 13 The comparison of section area according to S.W.B.M in VLCC

6. 결 론

본 논문에서는 각종 협약 및 규정을 토대로 하여 통합공통구 조규칙 기반 설계 프로그램 SeaTrust-HullScan을 이용한 종부재 의 설계 자동화 알고리즘을 개발하였다. 개발한 알고리즘을 115k 아프라막스급 유조선과 318k 초대형급 유조선(VLCC)에 각 각 적용하여 다음과 같은 결론을 얻을 수 있었다.

- 기 개발된 구획배치 자동화 시스템을 수행하여 얻은 결과를 비탕으로 종강도를 만족하는 범위 내에서 중앙 횡단면적을 최 소화하는 구조설계 자동화 알고리즘을 개발하였다.
- 2) 기 개발된 구획배치 자동화 시스템과 연동하기 위한 종부재의 설계 자동화 알고리즘을 개발하기 위해 보강재 형상에 따른 항 복강도 및 좌굴강도 영향도 조사, 재화중량별 최대 웨브 높이 제한 식에 대한 연구를 수행하였으며, 이를 통해 판재와 보강 재의 단면적을 최소화하는 자동화 알고리즘을 제안하였다.
- 3) 115k 아프리막스급 유조선을 대상으로 종부재의 중량 최소화 설계를 수행하고, 이를 실적선(CSR-OT)과 비교 평가하였다. 실 적선 대비 2.5% 높은 단면적을 얻었으며, H-CSR의 설계중량이 기존 CSR 대비 2~3% 높다는 학계의 연구결과를 감안하여 본 연구에서 제안한 알고리즘이 합리적임을 확인할 수 있었다.
- 4) 318k 초대형급 유조선을 대상으로 오차범위 0.03% 이내로 거의 동일한 화물창 용적을 갖는 경우에서 굽힘 모멘트 변화 에 따른 중앙 단면적의 변화량을 비교 평가한 결과, 정수 중 굽힘 모멘트가 감소함에 따라 단면적도 감소함을 확인하였다.
- 5) 향후 다양한 크기의 실적선 정보를 획득하여 구획배치 자동화 시스템의 설계 변수 다양화하여 굽힘 모멘트 감소량을 증가시 키는 연구와 본 연구에서 개발한 종부재 설계 자동화 알고리 즘을 적용 평가하는 연구를 진행할 계획이다.
- 6) 또한, 이를 연동환 통합 선박설계 시스템을 개발하는 연구도 진행하여 구획배치가 구조설계에 미치는 영향력 분석을 진행 할 계획이다. 이런 연구의 성과가 이루어진다면, 종부재의 최 소중량 설계만 아니라, 기본 설계기간 단축과 이로 인한 설계 공수 절감, 설계 기술력 확보 및 생산성의 효율을 증가시킬 수 있을 것으로 기대된다.

후 기

본 논문은 2014년 교육부와 한국연구재단의 지역혁신창의인 력양성사업(NRF-2014H1C1A1073060)의 지원을 받아 수행한 연구 결과이며 지원에 감사드립니다.

또한, 본 논문은 산업통상자원부의 출연금으로 수행한 대불산 학융합지구조성사업의 연구결과이며 지원에 감사드립니다.

References

- Byeon, S.H., 2014. *A study on comparison of ship structural designs between CSR and CSR-H.* Master's Thesis. Pusan National University.
- Byun, Y.C. Lee, K.Y. & Lee, K.H., 1997. A study on the expert system to support compartment arrangement in preliminary ship design. *Proceedings of the Annual Autumn Meeting*, SNAK, Seoul, 13–14 November 1997, pp.79–82.
- Han, S.N. & Lee, K.Y., 2000. A study on the optimum compartment layout design for the naval ship. *Proceedings of the Annual Autumn Meeting*, SNAK, Ulsan, 9–10 November 2000, pp.74–79.
- Han, S.N. Lee, K.Y. & Roh, M.I., 2001. A Study on the Optimal Facility Layout Design Using an Improved Genetic Algorithm. *International Journal of CAD/CAM*, 6(3), pp.174–183.
- International Association of Classification Societies, 2012. *Common Structural Rules for Doulbe Hull Oil Tankers*. [Online] (Update July 2012) Available at: http://www.iacs.org.uk [Accessed May 2016].
- International Association of Classification Societies(IACS), 2015. *Common Structural Rules for bulk carriers and oil tankers*. [Online] (Update January 2015) Available at: http://www.iacs.org.uk/ [Accessed May 2016].
- Jeong, S., 2013. *Development of optimization system for compartment arrangement of aframax oil tanker.* Master's Thesis. Mokpo National University.
- Jo, Y.C., 2010. *Optimum structural design system for double hull oil tanker based on elementary plate panel considering common structural rules*. Ph.D. Thesis. Dissertation Seoul National University.
- Lee, K.H. & Lee, K.Y., 1996. Knowledge-based approach to a compartment division design of double hull tanker. *Proceedings of the Annual Spring Meeting*, pp.29–32.
- Lee, K.H., 2012. Development of automated algorithm

- for compartment arrangement of aframax oil tanker for ship structural design. Master's Thesis. Mokpo National University.
- Na, S.S., 2005. Development of a Multi-objective Function Method Based on Pareto Optimal Point. *Journal of the Society of Naval Architects of Korea*, 42(2), pp.175-182.
- Moon, S.C., 2015. *Development of the Structural Design Algorithm according to compartment of arrangement based on H–CSR*. Master's Thesis. Mokpo National University.
- Shin, S.H. Song, H.C. & Jang, C.D., 2006. Optimum Structural Design of Tankers Using Multi-objective Optimization Technique. *Ships and Offshore Structures*, 1(3), pp.213–219.
- Song, H.C. Na, S.S. Jeong, S, Youn, G.E. Lee, J.R. Lee, H.G. & Park, H.G., 2013. Development of optimization system for compartment arrangement of oil tanker. *Joint Conference of the Korean Association of Ocean Science and Technology Societies*, Jeju, 23–25 May 2013, pp.967–972.

Sung, C.H. & Lee, S.K., 2015. Comparison Analysis

on Requirement of Structural Members by Application of Harmonized Common Structural Rules. *Journal of the Society of Naval Architects of Korea*, 52(3), pp. 265–274.

Yun, G.E., 2014. *Development of automated optimization system for compartment arrangement of bulk carrier*. Master's Thesis. Mokpo National University.

