• Title/Summary/Keyword: Green Energy Technology

Search Result 1,169, Processing Time 0.027 seconds

The Synthesis of Hydrophobic Silica Aerogel in the Macroporous Ceramic Structure by Ambient Drying Process (상압 건조 공정을 이용한 다공성 세라믹스 구조체 내부에 소수성 실리카 에어로겔의 합성)

  • Hong, Sun-Wook;Song, In-Hyuck;Park, Young-Jo;Yun, Hui-Suk;Hahn, Yoo-Dong;Hwang, Ki-Young;Rhee, Young-Woo
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.269-276
    • /
    • 2011
  • The synthesis behavior of nanoporous silica aerogel in the macroporous ceramic structure was observed using TEOS as a source material and glycerol as a dry control chemical additive (DCCA). Silica aerogel in the macroporous ceramic structure was synthesized via sono-gel process using hexamethyldiazane (HMDS) as a modification agent and n-hexane as a main solvent. The wet gel with a modified surface was dried at $105^{\circ}C$ under ambient pressure. The addition of glycerol appears to give the wet gel a more homogeneous microstructure. However, glycerol also retarded the rate of surface modification and solvent exchange. Silica aerogel completely filled the macroporous ceramic structure without defect in the condition of surface modification (20% HMDS/nhexane at 36hr).

The Planning Techniques and Layout Models of Sustainable Rural Villages (환경친화.자원절약형 농촌마을 계획기술 및 배치모델 연구)

  • Im, Seung-Bin;Shin, Ji-Hoon;Yun, Hee-Jeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.1 s.18
    • /
    • pp.1-9
    • /
    • 2003
  • This study intends to select the planning techniques and develop the layouts of environmentally friendly rural villages. As the results of this study, the planning techniques of rural villages are as follows: (1) Development of agricultural technology(organic farming), (2) Environmentally friendly layout considering natural energy, conservation of natural landscape and ecosystem, and sewage and rainwater, (3) Community restoration considering joint work, economic interchange between urban people and rural residents, and unity of rural resident's opinion, and (4) Activation of rural tourism considering satisfaction of tourists, conservation of ecological and cultural resources, and resident's income increasement. According to these 4 techniques, this study also developed 4 general models: (1) land-use and flow, (2) green and blue networks, (3) networks of ecological and cultural resources, and (4) finally residential model, divided rural villages into 2 types. Therefore when we develop a countryside, we can apply to these models, considering the current ecological and cultural resources conditions.

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods

  • Cha, Joeun;Ko, Eun-Song;Shin, Ik-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.96-100
    • /
    • 2017
  • Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.

The Effect of MOCVD Growth Parameters on the Photolumenescence Intensity of InN/GaN Multi-layers (MOCVD 성장조건이 InN/GaN 다층박막의 발광세기에 미치는 영향)

  • Kim, Hyeon-Su;Lee, Jeong-Ju;Jeong, Sun-Yeong;Lee, Jeong-Yong;Lin, J.Y.;Jiang, H.X.
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.190-194
    • /
    • 2002
  • InN/GaN multi-layers were grown by metalorganic chemical vapor deposition(MOCVD) in order to get the appropriate structure for an high power blue-green light emitting diode(LED), and effects of growth conditions (growth temperature, pressure, and $trimethylindium(TMIn)-NH_3-N_2\; flow\; rare)$ on the integrated photoluminescence (PL) intensity and PL peak energy in InN/GaN multi-layers were investigated. The optimized growth conditions with the highest integrated PL intensity for InN/GaN multi-layers were obtained: the growth temperature at $780^{\circ}C$, the growth pressure at 325 Torr, the TMIn flow rate with 150 $m\ell$/min, the $NH_3$flow rate with 3.2 ι/min, and $N_2$ flow rate with 2 ι/min.

Preparation and Electromagnetic Properties of an Electromagnetic Wave Absorber

  • Sun, Chang;Sun, Kangning;Pang, Laixue;Liu, Jian
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.61-64
    • /
    • 2016
  • In this study, we report the as-prepared MgO-doped $BaFe_{12}O_{19}$, which was prepared by calcination technique and high-energy ball milling process, as an electromagnetic wave absorber. The phase analysis of $BaFe_{12}O_{19}$ and the as-prepared MgO-doped $BaFe_{12}O_{19}$ was detected utilizing X-ray Diffractometer (XRD). The microstructure was characterized using Scanning Electron Microscope (SEM). By means of the transmission/reflection coaxial line method, the electromagnetic properties and microwave absorbing properties of the as-prepared electromagnetic wave absorber were studied. It is found that the electromagnetic wave absorber has a minimum reflection loss value of -41 dB at 4.27 GHz with a matching thickness of 2.6 mm. The experiment results revealed that the as-prepared electromagnetic wave absorber could find potential applications in many military as well as commercial industries.

Fabrication of Superjunction Trench Gate Power MOSFETs Using BSG-Doped Deep Trench of p-Pillar

  • Kim, Sang Gi;Park, Hoon Soo;Na, Kyoung Il;Yoo, Seong Wook;Won, Jongil;Koo, Jin Gun;Chai, Sang Hoon;Park, Hyung-Moo;Yang, Yil Suk;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.632-637
    • /
    • 2013
  • In this paper, we propose a superjunction trench gate MOSFET (SJ TGMOSFET) fabricated through a simple p-pillar forming process using deep trench and boron silicate glass doping process technology to reduce the process complexity. Throughout the various boron doping experiments, as well as the process simulations, we optimize the process conditions related with the p-pillar depth, lateral boron doping concentration, and diffusion temperature. Compared with a conventional TGMOSFET, the potential of the SJ TGMOSFET is more uniformly distributed and widely spread in the bulk region of the n-drift layer due to the trenched p-pillar. The measured breakdown voltage of the SJ TGMOSFET is at least 28% more than that of a conventional device.

Effect of Proton Irradiation on the Magnetic Properties of Antiferromagnet/ferromagnet Structures

  • Kim, Dong-Jun;Park, Jin-Seok;Ryu, Ho Jin;Jeong, Jong-Ryul;Chung, Chang-Kyu;Park, Byong-Guk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.159-163
    • /
    • 2016
  • Antiferromagnet (AFM)/ferromagnet (FM) bilayer structures are widely used in the magnetic devices of sensor and memory applications, as AFM materials can induce unidirectional anisotropy of the FM material via exchange coupling. The strength of the exchange coupling is known to be sensitive to quality of the interface of the AFM/FM bilayers. In this study, we utilize proton irradiation to modify the interface structures and investigate its effect on the magnetic properties of AFM/FM structures, including the exchange bias and magnetic thermoelectric effect. The magnetic properties of IrMn/CoFeB structures with various IrMn thicknesses are characterized after they are exposed to a proton beam of 3 MeV and $1{\sim}5{\times}10^{14}ions/cm^2$. We observe that the magnetic moment is gradually reduced as the amount of the dose is increased. On the other hand, the exchange bias field and thermoelectric voltage are not significantly affected by proton irradiation. This indicates that proton irradiation has more of an influence on the bulk property of the FM CoFeB layer and less of an effect on the IrMn/CoFeB interface.

An Efficient Synthesis of GUDN as Green Oxidizer (친환경 산화제 GUDN의 효율적 합성)

  • Sul, Min-Jung;Joo, Young-Hyuk;Jeong, Won-Bok;Park, Young-Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.97-104
    • /
    • 2013
  • N-Guanylurea dinitramide (GUDN) is an energetic material with low sensitivities and good performance for use as propellants or insensitive munitions explosives. The efficient synthesis and characterization of high energy density material of GUDN is reported. GUDN was characterized spectroscopically as well as elemental analysis. In addition, the heats of formation were calculated with the Gaussian 09 suite of programs. For initial safety testing, the impact sensitivity and the friction sensitivity were tested following BAM procedure.

A techno-economic analysis of partial repowering of a 210 MW coal fired power plant

  • Samanta, Samiran;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.167-179
    • /
    • 2015
  • This paper presents a techno-economic analysis of a partial repowering scheme for an existing 210 MW coal fired power plant by integrating a gas turbine and by employing waste heat recovery. In this repowering scheme, one of the four operating coal mills is taken out and a new natural gas fired gas turbine (GT) block is considered to be integrated, whose exhaust is fed to the furnace of the existing boiler. Feedwater heating is proposed through the utilization of waste heat of the boiler exhaust gas. From the thermodynamic analysis it is seen that the proposed repowering scheme helps to increase the plant capacity by about 28% and the overall efficiency by 27%. It also results in 21% reduction in the plant heat rate and 29% reduction in the specific $CO_2$ emissions. The economic analysis reveals that the partial repowering scheme is cost effective resulting in a reduction of the unit cost of electricity (UCOE) by 8.4%. The economic analysis further shows that the UCOE of the repowered plant is lower than that of a new green-field power plant of similar capacity.

Optimum Conditions for Artificial Fruiting Body Formation of Cordyceps cardinalis

  • Kim, Soo-Young;Shrestha, Bhushan;Sung, Gi-Ho;Han, Sang-Kuk;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.133-136
    • /
    • 2010
  • Stromatal fruiting bodies of Cordyceps cardinalis were successfully produced in cereals. Brown rice, German millet and standard millet produced the longest-length of stromata, followed by Chinese pearl barley, Indian millet, black rice and standard barley. Oatmeal produced the shortest-length of fruiting bodies. Supplementation of pupa and larva to the grains resulted in a slightly enhanced production of fruiting bodies; pupa showing better production than larva. 50~60 g of brown rice and 10~20 g of pupa mixed with 50~60 mL of water in 1,000 mL polypropylene (PP) bottle was found to be optimum for fruiting body production. Liquid inoculation of 15~20 mL per PP bottle produced best fruiting bodies. The optimal temperature for the formation of fruiting bodies was $25^{\circ}C$, under conditions of continuous light. Few fruiting bodies were produced under the condition of complete darkness, and the fresh weight was considerable low, compared to that of light condition.