DOI QR코드

DOI QR Code

Preparation and Electromagnetic Properties of an Electromagnetic Wave Absorber

  • Sun, Chang (Co-Innovation Center of Green Building, Shandong Jianzhu University) ;
  • Sun, Kangning (Engineering Ceramics Key Laboratory of Shandong Province, Shandong University) ;
  • Pang, Laixue (Research Center for Road Safety, Emergency, Disaster Reduction Technology, Shandong Jiaotong University) ;
  • Liu, Jian (School of Material Science and Engineering, Shandong Jianzhu University)
  • 투고 : 2015.12.14
  • 심사 : 2016.02.01
  • 발행 : 2016.03.31

초록

In this study, we report the as-prepared MgO-doped $BaFe_{12}O_{19}$, which was prepared by calcination technique and high-energy ball milling process, as an electromagnetic wave absorber. The phase analysis of $BaFe_{12}O_{19}$ and the as-prepared MgO-doped $BaFe_{12}O_{19}$ was detected utilizing X-ray Diffractometer (XRD). The microstructure was characterized using Scanning Electron Microscope (SEM). By means of the transmission/reflection coaxial line method, the electromagnetic properties and microwave absorbing properties of the as-prepared electromagnetic wave absorber were studied. It is found that the electromagnetic wave absorber has a minimum reflection loss value of -41 dB at 4.27 GHz with a matching thickness of 2.6 mm. The experiment results revealed that the as-prepared electromagnetic wave absorber could find potential applications in many military as well as commercial industries.

키워드

참고문헌

  1. S. S. Kim and I. K. Choi, J. Magn. 2, 25 (1997).
  2. B. Kim, H. Lee, S. Park, and H. Kim, Thin Solid Films 519, 3492 (2011). https://doi.org/10.1016/j.tsf.2011.01.093
  3. X. Liu, Y. Wu, and Z. Zhang, Physica B: Condensed Matter 405, 4393 (2010). https://doi.org/10.1016/j.physb.2010.08.002
  4. Z. Zhang, R. Fan, Z. Shi, K. Yan, Z. Zhang, X. Wang, and S. Dou, Rsc. Adv. 3, 26110 (2013). https://doi.org/10.1039/c3ra45253k
  5. K. Sakai, N. Asano, Y. Wada, and S. Yoshikado, J. Eur. Ceram Soc. 30, 347 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.05.044
  6. M. Itoh, J. R. Liu, T. Horikawa, and K. I. Machida, J. Alloys Compd. 408, 1400 (2006).
  7. K. Yan, R. Fan, M. Chen, K. Sun, L. Yin, H. Li, S. Pan, and M. Yu, J. Alloys Compd. 628, 429 (2015). https://doi.org/10.1016/j.jallcom.2014.12.137
  8. M. Chen, R. Fan, M. Gao, S. Pan, M. Yu, and Z. Zhang, J. Magn. Magn. Mater 381, 105 (2015). https://doi.org/10.1016/j.jmmm.2014.12.067
  9. S. Y. An, S. W. Lee, I. B. Shim, S. R. Yun, and C. S. Kim, J. Magn. 6, 23 (2001).
  10. V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, and X. Zuo, J. Magn. Magn. Mater 321, 2035 (2009). https://doi.org/10.1016/j.jmmm.2009.01.004
  11. M. Meshram, N. K. Agrawal, B. Sinha, and P. Misra, J. Magn. Magn. Mater 271, 207 (2004). https://doi.org/10.1016/j.jmmm.2003.09.045
  12. G. Mu, N. Chen, X. Pan, H. Shen, and M. Gu, Mater Lett. 62, 840 (2008). https://doi.org/10.1016/j.matlet.2007.06.074
  13. X. Tang and Y. Yang, Appl. Surf. Sci. 255, 9381 (2009). https://doi.org/10.1016/j.apsusc.2009.07.040
  14. J. Qiu, H. Shen, and M. Gu, Powder Technol. 154, 116 (2005). https://doi.org/10.1016/j.powtec.2005.05.003
  15. S. Gairola, V. Verma, A. Singh, L. Purohit, and R. Kotnala, Solid State Commun. 150, 147 (2010). https://doi.org/10.1016/j.ssc.2009.10.011
  16. Y. Feng, T. Qiu, and C. Shen, J. Magn. Magn. Mater 318, 8 (2007). https://doi.org/10.1016/j.jmmm.2007.04.012
  17. G. M. Rai, M. Iqbal, and K. Kubra, J. Alloys Compd. 495, 229 (2010). https://doi.org/10.1016/j.jallcom.2010.01.133
  18. J. Qiu, L. Lan, H. Zhang, and M. Gu, J. Alloys Compd. 453, 261 (2008). https://doi.org/10.1016/j.jallcom.2006.11.059
  19. A. Gonzalez-Angeles, G. Mendoza-Suarez, A. Gruskova, R. Dosoudil, and R. Ortega-Zempoalteca, Mater Lett. 58, 2906 (2004). https://doi.org/10.1016/j.matlet.2004.05.017
  20. I. Bsoul and S. Mahmood, J. Alloys Compd. 489, 110 (2010). https://doi.org/10.1016/j.jallcom.2009.09.024
  21. W. Lixi, H. Qiang, M. Lei, and Z. Qitu, J. Rare Earth 25, 216 (2007). https://doi.org/10.1016/S1002-0721(07)60473-6
  22. K. K. Mallick, P. Shepherd, and R. J. Green, J. Magn. Magn. Mater 312, 418 (2007). https://doi.org/10.1016/j.jmmm.2006.11.130
  23. L. Sengupta, E. Ngo, S. Stowell, M. O'day, and R. Lancto, U.S. Patent 5,427,988 (1995).
  24. C. Chou, J. Chen, R. Yang, and S. Chou, Powder Technol. 202, 39 (2010). https://doi.org/10.1016/j.powtec.2010.03.043
  25. J. Brito-Chaparro, A. Reyes-Rojas, M. Bocanegra-Bernal, A. Aguilar-Elguezabal, and J. Echeberria, Mater Chem. Phys. 106, 45 (2007). https://doi.org/10.1016/j.matchemphys.2007.05.024
  26. S. Kume, M. Yasuoka, N. Omura, and K. Watari, J. Eur. Ceram. Soc. 25, 2791 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.141
  27. L. Jia, H. Zhang, J. Luo, Y. Liu, and Q. Wen, J. Magn. Magn. Mater 322, 1934 (2010). https://doi.org/10.1016/j.jmmm.2010.01.010
  28. P. Sen, P. Sen, R. Bhatt, S. Kar, V. Shukla, and K. Bartwal, Solid State Commun. 129, 747 (2004). https://doi.org/10.1016/j.ssc.2003.11.050
  29. S. Chang, S. Kangning, and C. Pengfei, J. Magn. Magn. Mater 324, 802 (2012). https://doi.org/10.1016/j.jmmm.2011.09.023
  30. Y. Naito and K. Suetake, Microwave Theory and Techniques, IEEE Transactions on 19, 65 (1971). https://doi.org/10.1109/TMTT.1971.1127446
  31. C. Tsay, H. Cheng, Y. Tung, W. Tuan, and C. Lin, Thin Solid Films 517, 1032 (2008). https://doi.org/10.1016/j.tsf.2008.06.030
  32. H. Yang, T. Ye, Y. Lin, and M. Liu, Synthetic. Met. 210, Part B, 245 (2015). https://doi.org/10.1016/j.synthmet.2015.10.006