Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.2.96

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods  

Cha, Joeun (Department of Chemistry, Soongsil University)
Ko, Eun-Song (Department of Chemistry, Soongsil University)
Shin, Ik-Soo (Department of Chemistry, Soongsil University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.2, 2017 , pp. 96-100 More about this Journal
Abstract
Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.
Keywords
Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate; $(ppy)_2Ir(acac)$; HOMO; Cyclic voltammetry; Chronocoulometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc., 2001, 123(18), 4304-4312.   DOI
2 C. W. Lee and J. Y. Lee, Chem. Mater., 2014, 26(4), 1616-1621.
3 J.-E. Park, S. Song, and I.-S. Shin, Int. J. Electrochem. Sci., 2016, 11, 5891-5899.
4 A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, second ed., John Wiley & Sons, New York (2000).
5 F. J. Vidal-Iglesias, J. Solla-Gullon, A. Rodes, E. Herrero and A. Aldaz, J. Chem. Edu., 2012, 89(7), 936-939 .   DOI
6 M. Nonoyama, Bull. Chem. Soc. Jpn., 1974, 47, 767-768.   DOI
7 M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395(6698), 151-154.   DOI
8 G. Ge, J. He, H. Guo, F. Wang, and D. Zou, J. Organometallic Chem., 2009, 694(19), 3050-3057.   DOI
9 B. W. D'Andrade, S. Datta, S. R. Forrest, P. Djurovich, E. Polikarpov and M. E. Thompson, Org. Electron., 2005, 6(1), 11-20.   DOI
10 A. Kapturkiewicz, J. Nowacki, and P Borowicz, Electrochim. Acta, 2005, 50(16), 3395-3400.   DOI
11 C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. App. Phys., 2001, 90(10), 5048-5051.   DOI
12 R. S. Nicholson, Anal. Chem., 1965, 37(11), 1351-1355.   DOI
13 S. Tanimoto and A. Ichimura, J. Chem. Edu. 2013, 90(6), 778-781.   DOI
14 L. Xiong, L. Aldous, M. C. Henstridge, and R. G. Compton, Anal. Methods, 2012, 4(2), 371-376.   DOI