DOI QR코드

DOI QR Code

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods

  • Cha, Joeun (Department of Chemistry, Soongsil University) ;
  • Ko, Eun-Song (Department of Chemistry, Soongsil University) ;
  • Shin, Ik-Soo (Department of Chemistry, Soongsil University)
  • Received : 2017.01.03
  • Accepted : 2017.02.01
  • Published : 2017.06.30

Abstract

Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.

Keywords

References

  1. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc., 2001, 123(18), 4304-4312. https://doi.org/10.1021/ja003693s
  2. C. W. Lee and J. Y. Lee, Chem. Mater., 2014, 26(4), 1616-1621.
  3. J.-E. Park, S. Song, and I.-S. Shin, Int. J. Electrochem. Sci., 2016, 11, 5891-5899.
  4. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, second ed., John Wiley & Sons, New York (2000).
  5. F. J. Vidal-Iglesias, J. Solla-Gullon, A. Rodes, E. Herrero and A. Aldaz, J. Chem. Edu., 2012, 89(7), 936-939 . https://doi.org/10.1021/ed2007179
  6. L. Xiong, L. Aldous, M. C. Henstridge, and R. G. Compton, Anal. Methods, 2012, 4(2), 371-376. https://doi.org/10.1039/C1AY05667K
  7. M. Nonoyama, Bull. Chem. Soc. Jpn., 1974, 47, 767-768. https://doi.org/10.1246/bcsj.47.767
  8. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395(6698), 151-154. https://doi.org/10.1038/25954
  9. G. Ge, J. He, H. Guo, F. Wang, and D. Zou, J. Organometallic Chem., 2009, 694(19), 3050-3057. https://doi.org/10.1016/j.jorganchem.2009.05.037
  10. B. W. D'Andrade, S. Datta, S. R. Forrest, P. Djurovich, E. Polikarpov and M. E. Thompson, Org. Electron., 2005, 6(1), 11-20. https://doi.org/10.1016/j.orgel.2005.01.002
  11. A. Kapturkiewicz, J. Nowacki, and P Borowicz, Electrochim. Acta, 2005, 50(16), 3395-3400. https://doi.org/10.1016/j.electacta.2004.12.013
  12. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. App. Phys., 2001, 90(10), 5048-5051. https://doi.org/10.1063/1.1409582
  13. R. S. Nicholson, Anal. Chem., 1965, 37(11), 1351-1355. https://doi.org/10.1021/ac60230a016
  14. S. Tanimoto and A. Ichimura, J. Chem. Edu. 2013, 90(6), 778-781. https://doi.org/10.1021/ed200604m