• Title/Summary/Keyword: Graphite nanosheets

Search Result 13, Processing Time 0.024 seconds

Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes

  • Meng, Long-Yue;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.209-214
    • /
    • 2012
  • In this work, the reduced graphene nanosheets were synthesized from pre-exfoliated graphite flakes. The pristine graphite flakes were firstly pre-exfoliated to graphite nanoplatelets in the presence of acetic acid. The obtained graphite nanoplatelets were treated by Hummer's method to produce graphite oxide sheets and were finally exfoliated to graphene nanosheets by ultrasonication and reduction processes. The prepared graphene nanosheets were studied by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). From the results, it was found that the preexfoliation process showed significant influence on preparation of graphite oxide sheets and graphene nanosheets. The prepared graphene nanosheets were applied to the preparation of conductive materials, which yielded a greatly improved electrical resistance of $200{\Omega}/sq$.

Thermoelectric Properties of Graphite Nanosheets/Poly(vinylidene fluoride) Composites (Graphite Nanosheets/PVDF 복합체의 열전 성질)

  • Yoon, Ho Dong;Nam, Seungwoong;Tu, Nguyen D.K.;Kim, Daeheum;Kim, Heesuk
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.638-641
    • /
    • 2013
  • GNS/PVDF composites were prepared using graphite nanosheets (GNS) and poly(vinylidene fluoride) (PVDF) for flexible thermoelectric application. We measured the electrical conductivity, thermal conductivity and Seebeck coefficient of GNS/PVDF composites with different contents of GNS and then evaluated the thermoelectric properties of GNS/PVDF composites. The electrical conductivity of GNS/PVDF composites increased from 389 to 1512 S/m with increasing the content of GNS from 10 to 70 wt%. While the electrical conductivity dramatically increased, Seebeck coefficient and thermal conductivity did not show any big difference as the content of GNS increases. In this study, we demonstrated that GNS/PVDF composites improved the thermoelectric properties by decreasing the thermal conductivity due to the phonon scattering at the interfaces between polymer and GNS nanoplatelets.

Preparation and Characteristics of Core-Shell Structure with Nano Si/Graphite Nanosheets Hybrid Layers Coated on Spherical Natural Graphite as Anode Material for Lithium-ion Batteries

  • Kwon, Hae-Jun;Son, Jong-In;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.74-81
    • /
    • 2021
  • Silicon (Si) is recognized as a promising anode material for high-energy-density lithium-ion batteries. However, under a condition of electrode comparable to commercial graphite anodes with low binder content and a high electrode density, the practical use of Si is limited due to the huge volume change associated with Si-Li alloying/de-alloying. Here, we report a novel core-shell composite, having a reversible capacity of ~ 500 mAh g-1, by forming a shell composed of a mixture of nano-Si, graphite nanosheets and a pitch carbon on a spherical natural graphite particle. The electrochemical measurements are performed using electrodes with 2 wt % styrene butadiene rubber (SBR) and 2 wt.% carboxymethyl cellulose (CMC) binder in an electrode density of ~ 1.6 g cm-3. The core-shell composites having the reversible capacity of 478 mAh g-1 shows the outstanding capacity retention of 99% after 100 cycles with the initial coulombic efficiency of 90%. The heterostructure of core-shell composites appears to be very effective in buffering the volume change of Si during cycling.

Electrical and Mechanical Properties of Graphite Nanosheet/Carbon Nanotubes-filled Epoxy Nanocomposites

  • Kim, Ki-Seok;Choi, Kyeong-Eun;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.335-338
    • /
    • 2009
  • In this work, the effect of co-carbon fillers on the electrical and mechanical properties of epoxy nanocomposites was investigated. The graphite nanosheets (GNs) and multi-walled carbon nanotubes (MWNTs) were used as co-carbon fillers. The results showed that the electrical conductivity of the epoxy nanocomposites showed a considerable increase upon an addition of MWNTs when GNs were fixed at 2 wt.%. This indicated that low content GNs formed the bulk conductive network and then MWNTs added were intercalated between the GN layers, resulted in the formation of additional conductive pathway. Furthermore, the flexural strength of the epoxy nanocomposites was enhanced with increasing the MWNT content. It was probably attributed to the flexible MWNTs compared with rigid GNs, resulted in the enhancement of the mechanical properties.

Spark Plasma Sintering of the Ni-graphite Composite Powder Prepared by Electrical Explosion of Wire in Liquid and Its Properties

  • Thuyet-Nguyen, Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.14-24
    • /
    • 2020
  • In this work, the electrical explosion of wire in liquid and subsequent spark plasma sintering (SPS) was introduced for the fabrication of Ni-graphite nanocomposites. The fabricated composite exhibited good enhancements in mechanical properties, such as yield strength and hardness, but reduced the ductility in comparison with that of nickel. The as-synthesized Ni-graphite (5 vol.% graphite) nanocomposite exhibited a compressive yield strength of 275 MPa (about 1.6 times of SPS-processed monolithic nickel ~170 MPa) and elongation to failure ~22%. The hardness of Ni-graphite composite had a value of 135.46 HV, which is about 1.3 times higher than that of pure SPS-processed Ni (105.675 HV). In terms of processing, this work demonstrated that this processing route is a novel, simple, and low-cost method for the synthesis of nickel-graphite composites.

Influence of Aminized Graphite Nanosheets on the Physical Properties of PMMA-based Nanocomposites

  • Kim, Ki-Seok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.196-200
    • /
    • 2011
  • In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated graphite nanosheets ($NH_2$-GNs) and the surface characteristics and physical properties of the $NH_2$-GNs-g-PMMA films were investigated. The graft reaction of $NH_2$-GNs and PMMA was confirmed from the shift of the $N_{1S}$ peak, including amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The surface characteristics of the $NH_2$-GNs-g-PMMA films were measured as a function of the $NH_2$-GN content using the contact angle method. It was revealed that the specific component of the surface free energy (${\gamma}s$) of the films was slightly increased as the $NH_2$-GN content increased. Also, the thermal and mechanical properties of the $NH_2$-GNs-g-PMMA films were enhanced with the addition of $NH_2$-GNs. This can be attributed to the chemical bonding caused by the graft reaction between the $NH_2$-GNs and the PMMA matrix.

Synthesis of carbon nanosheets using RF thermal plasma (유도 열플라즈마를 이용한 카본나노시트 합성)

  • Lee, Seung-Yong;Ko, Sang-Min;Koo, Sang-Man;Hwang, Kwang-Taek;Han, Kyu-Sung;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.207-212
    • /
    • 2014
  • An ultrathin sheet-like carbon nanostructure provides an important model of a two-dimensional graphite structure with strong anisotropy in physical properties. As an easy and cheap route for mass production, RF thermal plasma synthesis of freestanding carbon nanosheet from $CH_4$ (Methane) and $C_3H_8$ (Propane) is presented. Using vapor synthesis process with RF inductively thermal plasma, carbon nanosheets were obtained without catalysts and substrates. The synthesized carbon nanosheets were characterized using transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. The carbon nanosheets synthesized using methane and propane generally showed 5~6 and 15~16 layers with a wrinkled morphology and size of approximately 100 nm.

Direct Synthesis of Au/TiO2/graphene Composites and Their Application for Degradation of Various Organic Dyes (그래파이트로부터 직접 제조한 Au/TiO2/그래핀 복합체와 이를 이용한 염료의 광분해에 관한 연구)

  • Jeong, Gyoung Hwa;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.607-611
    • /
    • 2020
  • In this research, we synthesized Au/TiO2/graphene composites using ionic surfactants for the exfoliation of graphite layers, directly. In the graphene composite, TiO2 with thin nanosheet shapes was distributed on the graphene surface and Au nanoparticles with less than 10 nm sizes were evenly distributed on the surface of the TiO2 nanosheets. The Au/TiO2/graphene composite was then applied to the photodegradation of various dyes such as methylene blue, methylene orange and rhodamine 6G, and B. Among them, the methylene blue showed the most excellent photodegradation activity (91.6%) while the rhodamine B exhibited 31.0%.

Nano composite System based on ZnO-functionalized Graphene Oxide Nanosheets for Determination of Cabergoline

  • Beitollahi, Hadi;Tajik, Somayeh;Alizadeh, Reza
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • In this paper we report an electrochemical sensor based on ZnO-functionalized graphene oxide nanocomposite (ZnO-GO) for the sensitive determination of the cabergoline. Cabergoline electrochemical behaviors were investigated by cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV). The modified electrode shows electrocatalytic activity toward cabergoline oxidation in phosphate buffer solution (PBS) (pH 7.0) with a reduction of the overpotential of about 180 mV and an increase in peak current. The DPV data showed that the obtained anodic peak currents were linearly dependent on the cabergoline concentrations in the range of $1.0-200.0{\mu}M$, with the detection limit of $0.45{\mu}M$. The prepared electrode was successfully applied for the determination of cabergoline in real samples.