DOI QR코드

DOI QR Code

Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes

  • Received : 2011.07.18
  • Accepted : 2011.11.21
  • Published : 2012.01.20

Abstract

In this work, the reduced graphene nanosheets were synthesized from pre-exfoliated graphite flakes. The pristine graphite flakes were firstly pre-exfoliated to graphite nanoplatelets in the presence of acetic acid. The obtained graphite nanoplatelets were treated by Hummer's method to produce graphite oxide sheets and were finally exfoliated to graphene nanosheets by ultrasonication and reduction processes. The prepared graphene nanosheets were studied by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). From the results, it was found that the preexfoliation process showed significant influence on preparation of graphite oxide sheets and graphene nanosheets. The prepared graphene nanosheets were applied to the preparation of conductive materials, which yielded a greatly improved electrical resistance of $200{\Omega}/sq$.

Keywords

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; GrigorieVa, I. V.; Firsov, A. A. Science 2004, 306, 666. https://doi.org/10.1126/science.1102896
  2. Ghosh, A.; Subrahmanyam, K. S.; Krishna, K. S.; Datta, S.; Govindaraj, A.; Pati, S. K.; Rao, C. N. R. J. Phys. Chem. B 2008, 112, 15704.
  3. Bai, H.; Li, C.; Wang, X.; Shi, G. Chem. Comm. 2010, 46, 2376. https://doi.org/10.1039/c000051e
  4. Cai, D.; Song, M.; Xu, C. Adv. Mater. 2008, 20, 1706. https://doi.org/10.1002/adma.200702602
  5. Ahn, K. S.; Seo, S. W.; Park, J. H.; Min, B. K.; Jung, W. S. Bull. Korean. Chem. Soc. 2011, 32, 1579. https://doi.org/10.5012/bkcs.2011.32.5.1579
  6. Kim, B. J.; Byun, J. H.; Park, S. J. Bull. Korean. Chem. Soc. 2010, 31, 2261. https://doi.org/10.5012/bkcs.2010.31.8.2261
  7. Sutter, P. Nature Mater. 2009, 8, 171. https://doi.org/10.1038/nmat2392
  8. Chae, S. J.; Günes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Adv. Mater. 2008, 21, 2328. https://doi.org/10.1002/adma.200803016
  9. Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 2008, 8, 3137.
  10. Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J. J. Mater. Chem. 2010, 20, 2277. https://doi.org/10.1039/b920539j
  11. Jang, B. Z.; Zhamu, A. J. Mater. Sci. 2008, 43, 5092. https://doi.org/10.1007/s10853-008-2755-2
  12. Geng, Y.; Wang, S. J.; Kim, J. K. J. Colloid Interface Sci. 2009, 336, 592. https://doi.org/10.1016/j.jcis.2009.04.005
  13. Kim, K. S.; Rhee, K. Y.; Lee, K. H.; Byund, J. H.; Park, S. J. J. Ind. Eng. Chem. 2010, 16, 572. https://doi.org/10.1021/ie50174a009
  14. Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera- Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535. https://doi.org/10.1021/jp060936f
  15. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. ACS Nano 2008, 2, 463. https://doi.org/10.1021/nn700375n
  16. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. Jr.; Ruoff, R. S. Carbon 2009, 47, 145. https://doi.org/10.1016/j.carbon.2008.09.045
  17. Si, Y.; Samulski, E. Nano Lett. 2008, 8, 1679. https://doi.org/10.1021/nl080604h
  18. Muszynski, R.; Seger, B.; Kamat, P. V. J. Phys. Chem. C 2008, 112, 5263. https://doi.org/10.1021/jp800977b
  19. Wang, G.; Shen, X.; Wang, B.; Yao, J.; Park, J. Carbon 2009, 47, 1359. https://doi.org/10.1016/j.carbon.2009.01.027
  20. Veca, L. M.; Lu, F.; Meziani, M. J.; Cao, L.; Zhang, P.; Qi, G.; Qu, L.; Shrestha, M.; Sun, Y. P. Chem. Comm. 2009, 18, 2565.
  21. Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. C 2008, 112, 8192. https://doi.org/10.1021/jp710931h
  22. Bourlinors, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Langmuir 2003, 19, 6050. https://doi.org/10.1021/la026525h
  23. Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Adv. Mater. 2008, 20, 4490. https://doi.org/10.1002/adma.200801306
  24. Wu, Z. S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H. M. Carbon 2009, 47, 493. https://doi.org/10.1016/j.carbon.2008.10.031
  25. Meng, L. Y.; Park, S. J. J. Colloid Interface Sci. 2010, 342, 559. https://doi.org/10.1016/j.jcis.2009.10.022
  26. Pasricha, R.; Gupta, S.; Srivastava, A. K. Small 2009, 5, 2253. https://doi.org/10.1002/smll.200900726
  27. Gunes, F.; Han, G. H.; Kim, K. K.; Kim, E. S.; Chae, S. J.; Park, M. H.; Jeong H. K.; Lim, S. C.; Lee, Y. H. Nano: Brief Reports and Reviews 2009, 4, 83.
  28. Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P.; Nguyen, S. B. T.; Ruoff, R. S. Nano Lett. 2007, 7, 1888. https://doi.org/10.1021/nl070477+
  29. Rani, A.; Nam, S.; Oh, K. A.; Park, M. Carbon Lett. 2010, 11, 90. https://doi.org/10.5714/CL.2010.11.2.090
  30. Liu, W.; Do, I.; Fukushima, H.; Drzal, L. T. Carbon Lett. 2010, 11, 279. https://doi.org/10.5714/CL.2010.11.4.279

Cited by

  1. Synthesis of mono layer graphene oxide from sonicated graphite flakes and their Hall effect measurements vol.32, pp.2, 2014, https://doi.org/10.2478/s13536-013-0189-2
  2. Reduced Graphene Oxide Composite of Gallium Zinc Oxynitride Photocatalyst with Improved Activity for Overall Water Splitting vol.39, pp.1, 2016, https://doi.org/10.1002/ceat.201500239
  3. Toxicity mechanism of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy vol.4, pp.4, 2015, https://doi.org/10.1039/C4TX00138A
  4. Carbon rich fly ash and their nanostructures vol.19, 2016, https://doi.org/10.5714/CL.2016.19.023
  5. The use of different types of reduced graphene oxide in the preparation of Fe-N-C electrocatalysts: capacitive behavior and oxygen reduction reaction activity in alkaline medium vol.20, pp.12, 2016, https://doi.org/10.1007/s10008-016-3332-2
  6. Polymer composite reinforced with nanoparticles produced from graphitic carbon-rich fly ash vol.51, pp.18, 2017, https://doi.org/10.1177/0021998316673891
  7. Single-walled carbon nanotubes as stabilizing agents in red phosphorus Li-ion battery anodes vol.7, pp.63, 2017, https://doi.org/10.1039/C7RA06601E
  8. Analysis of Seawater Samples vol.162, pp.4, 2015, https://doi.org/10.1149/2.0571504jes
  9. on the electrical and thermoelectric properties of poly(vinyl alcohol)/graphene nanoplatelets nanocomposite vol.3, pp.3, 2016, https://doi.org/10.1088/2053-1591/3/3/035015
  10. Extended studies on surface-treated graphite vis-à-vis its application in high alumina refractory castable vol.15, pp.3, 2018, https://doi.org/10.1111/ijac.12852
  11. Functionality of TERGO Powders during the Synthesis of PANI-Based Composites for Electrical Devices vol.2019, pp.1687-4129, 2019, https://doi.org/10.1155/2019/2872460
  12. CHISELED NICKEL HYDROXIDE NANOPLATES GROWTH ON GRAPHENE SHEETS FOR LITHIUM ION BATTERIES vol.8, pp.6, 2012, https://doi.org/10.1142/s1793292013500689
  13. Reduction of the oxygen reduction reaction overpotential of nitrogen-doped graphene by designing it to a microspherical hollow shape vol.2, pp.34, 2012, https://doi.org/10.1039/c4ta01706d
  14. Synthesis of Graphite Oxide-Wrapped CuO Nanocomposites for Electrocatalytic Oxidation of Glucose vol.44, pp.10, 2012, https://doi.org/10.1080/15533174.2013.791840
  15. Controlling the properties of graphene produced by electrochemical exfoliation vol.26, pp.33, 2012, https://doi.org/10.1088/0957-4484/26/33/335607
  16. Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy vol.1111, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2016.01.072
  17. Microwave synthesis of ultrathin, non-agglomerated CuO nanosheets and their evaluation as nanofillers for polymer nanocomposites vol.680, pp.None, 2012, https://doi.org/10.1016/j.jallcom.2016.04.147
  18. Removal of U(VI) by sugar-based magnetic pseudo-graphene oxide and its application to authentic groundwater using electromagnetic system vol.26, pp.22, 2012, https://doi.org/10.1007/s11356-019-05260-5
  19. Large-scalable graphene oxide films with resistive switching for non-volatile memory applications vol.849, pp.None, 2020, https://doi.org/10.1016/j.jallcom.2020.156699
  20. Investigation of sheet resistance variation with annealing temperature and development of highly sensitive and selective room temperature ammonia gas sensor using functionalized graphene oxide vol.32, pp.2, 2012, https://doi.org/10.1007/s10854-020-04940-0