References
- Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; GrigorieVa, I. V.; Firsov, A. A. Science 2004, 306, 666. https://doi.org/10.1126/science.1102896
- Ghosh, A.; Subrahmanyam, K. S.; Krishna, K. S.; Datta, S.; Govindaraj, A.; Pati, S. K.; Rao, C. N. R. J. Phys. Chem. B 2008, 112, 15704.
- Bai, H.; Li, C.; Wang, X.; Shi, G. Chem. Comm. 2010, 46, 2376. https://doi.org/10.1039/c000051e
- Cai, D.; Song, M.; Xu, C. Adv. Mater. 2008, 20, 1706. https://doi.org/10.1002/adma.200702602
- Ahn, K. S.; Seo, S. W.; Park, J. H.; Min, B. K.; Jung, W. S. Bull. Korean. Chem. Soc. 2011, 32, 1579. https://doi.org/10.5012/bkcs.2011.32.5.1579
- Kim, B. J.; Byun, J. H.; Park, S. J. Bull. Korean. Chem. Soc. 2010, 31, 2261. https://doi.org/10.5012/bkcs.2010.31.8.2261
- Sutter, P. Nature Mater. 2009, 8, 171. https://doi.org/10.1038/nmat2392
- Chae, S. J.; Günes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Adv. Mater. 2008, 21, 2328. https://doi.org/10.1002/adma.200803016
- Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 2008, 8, 3137.
- Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J. J. Mater. Chem. 2010, 20, 2277. https://doi.org/10.1039/b920539j
- Jang, B. Z.; Zhamu, A. J. Mater. Sci. 2008, 43, 5092. https://doi.org/10.1007/s10853-008-2755-2
- Geng, Y.; Wang, S. J.; Kim, J. K. J. Colloid Interface Sci. 2009, 336, 592. https://doi.org/10.1016/j.jcis.2009.04.005
- Kim, K. S.; Rhee, K. Y.; Lee, K. H.; Byund, J. H.; Park, S. J. J. Ind. Eng. Chem. 2010, 16, 572. https://doi.org/10.1021/ie50174a009
- Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera- Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535. https://doi.org/10.1021/jp060936f
- Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. ACS Nano 2008, 2, 463. https://doi.org/10.1021/nn700375n
- Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. Jr.; Ruoff, R. S. Carbon 2009, 47, 145. https://doi.org/10.1016/j.carbon.2008.09.045
- Si, Y.; Samulski, E. Nano Lett. 2008, 8, 1679. https://doi.org/10.1021/nl080604h
- Muszynski, R.; Seger, B.; Kamat, P. V. J. Phys. Chem. C 2008, 112, 5263. https://doi.org/10.1021/jp800977b
- Wang, G.; Shen, X.; Wang, B.; Yao, J.; Park, J. Carbon 2009, 47, 1359. https://doi.org/10.1016/j.carbon.2009.01.027
- Veca, L. M.; Lu, F.; Meziani, M. J.; Cao, L.; Zhang, P.; Qi, G.; Qu, L.; Shrestha, M.; Sun, Y. P. Chem. Comm. 2009, 18, 2565.
- Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. C 2008, 112, 8192. https://doi.org/10.1021/jp710931h
- Bourlinors, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Langmuir 2003, 19, 6050. https://doi.org/10.1021/la026525h
- Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Adv. Mater. 2008, 20, 4490. https://doi.org/10.1002/adma.200801306
- Wu, Z. S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H. M. Carbon 2009, 47, 493. https://doi.org/10.1016/j.carbon.2008.10.031
- Meng, L. Y.; Park, S. J. J. Colloid Interface Sci. 2010, 342, 559. https://doi.org/10.1016/j.jcis.2009.10.022
- Pasricha, R.; Gupta, S.; Srivastava, A. K. Small 2009, 5, 2253. https://doi.org/10.1002/smll.200900726
- Gunes, F.; Han, G. H.; Kim, K. K.; Kim, E. S.; Chae, S. J.; Park, M. H.; Jeong H. K.; Lim, S. C.; Lee, Y. H. Nano: Brief Reports and Reviews 2009, 4, 83.
- Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P.; Nguyen, S. B. T.; Ruoff, R. S. Nano Lett. 2007, 7, 1888. https://doi.org/10.1021/nl070477+
- Rani, A.; Nam, S.; Oh, K. A.; Park, M. Carbon Lett. 2010, 11, 90. https://doi.org/10.5714/CL.2010.11.2.090
- Liu, W.; Do, I.; Fukushima, H.; Drzal, L. T. Carbon Lett. 2010, 11, 279. https://doi.org/10.5714/CL.2010.11.4.279
Cited by
- Synthesis of mono layer graphene oxide from sonicated graphite flakes and their Hall effect measurements vol.32, pp.2, 2014, https://doi.org/10.2478/s13536-013-0189-2
- Reduced Graphene Oxide Composite of Gallium Zinc Oxynitride Photocatalyst with Improved Activity for Overall Water Splitting vol.39, pp.1, 2016, https://doi.org/10.1002/ceat.201500239
- Toxicity mechanism of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy vol.4, pp.4, 2015, https://doi.org/10.1039/C4TX00138A
- Carbon rich fly ash and their nanostructures vol.19, 2016, https://doi.org/10.5714/CL.2016.19.023
- The use of different types of reduced graphene oxide in the preparation of Fe-N-C electrocatalysts: capacitive behavior and oxygen reduction reaction activity in alkaline medium vol.20, pp.12, 2016, https://doi.org/10.1007/s10008-016-3332-2
- Polymer composite reinforced with nanoparticles produced from graphitic carbon-rich fly ash vol.51, pp.18, 2017, https://doi.org/10.1177/0021998316673891
- Single-walled carbon nanotubes as stabilizing agents in red phosphorus Li-ion battery anodes vol.7, pp.63, 2017, https://doi.org/10.1039/C7RA06601E
- Analysis of Seawater Samples vol.162, pp.4, 2015, https://doi.org/10.1149/2.0571504jes
- on the electrical and thermoelectric properties of poly(vinyl alcohol)/graphene nanoplatelets nanocomposite vol.3, pp.3, 2016, https://doi.org/10.1088/2053-1591/3/3/035015
- Extended studies on surface-treated graphite vis-à-vis its application in high alumina refractory castable vol.15, pp.3, 2018, https://doi.org/10.1111/ijac.12852
- Functionality of TERGO Powders during the Synthesis of PANI-Based Composites for Electrical Devices vol.2019, pp.1687-4129, 2019, https://doi.org/10.1155/2019/2872460
- CHISELED NICKEL HYDROXIDE NANOPLATES GROWTH ON GRAPHENE SHEETS FOR LITHIUM ION BATTERIES vol.8, pp.6, 2012, https://doi.org/10.1142/s1793292013500689
- Reduction of the oxygen reduction reaction overpotential of nitrogen-doped graphene by designing it to a microspherical hollow shape vol.2, pp.34, 2012, https://doi.org/10.1039/c4ta01706d
- Synthesis of Graphite Oxide-Wrapped CuO Nanocomposites for Electrocatalytic Oxidation of Glucose vol.44, pp.10, 2012, https://doi.org/10.1080/15533174.2013.791840
- Controlling the properties of graphene produced by electrochemical exfoliation vol.26, pp.33, 2012, https://doi.org/10.1088/0957-4484/26/33/335607
- Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy vol.1111, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2016.01.072
- Microwave synthesis of ultrathin, non-agglomerated CuO nanosheets and their evaluation as nanofillers for polymer nanocomposites vol.680, pp.None, 2012, https://doi.org/10.1016/j.jallcom.2016.04.147
- Removal of U(VI) by sugar-based magnetic pseudo-graphene oxide and its application to authentic groundwater using electromagnetic system vol.26, pp.22, 2012, https://doi.org/10.1007/s11356-019-05260-5
- Large-scalable graphene oxide films with resistive switching for non-volatile memory applications vol.849, pp.None, 2020, https://doi.org/10.1016/j.jallcom.2020.156699
- Investigation of sheet resistance variation with annealing temperature and development of highly sensitive and selective room temperature ammonia gas sensor using functionalized graphene oxide vol.32, pp.2, 2012, https://doi.org/10.1007/s10854-020-04940-0