DOI QR코드

DOI QR Code

Spark Plasma Sintering of the Ni-graphite Composite Powder Prepared by Electrical Explosion of Wire in Liquid and Its Properties

  • Thuyet-Nguyen, Minh (School of Materials Science and Engineering, Hanoi University of Science and Technology) ;
  • Kim, Jin-Chun (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2020.02.17
  • Accepted : 2020.02.21
  • Published : 2020.02.28

Abstract

In this work, the electrical explosion of wire in liquid and subsequent spark plasma sintering (SPS) was introduced for the fabrication of Ni-graphite nanocomposites. The fabricated composite exhibited good enhancements in mechanical properties, such as yield strength and hardness, but reduced the ductility in comparison with that of nickel. The as-synthesized Ni-graphite (5 vol.% graphite) nanocomposite exhibited a compressive yield strength of 275 MPa (about 1.6 times of SPS-processed monolithic nickel ~170 MPa) and elongation to failure ~22%. The hardness of Ni-graphite composite had a value of 135.46 HV, which is about 1.3 times higher than that of pure SPS-processed Ni (105.675 HV). In terms of processing, this work demonstrated that this processing route is a novel, simple, and low-cost method for the synthesis of nickel-graphite composites.

Keywords

References

  1. R. F. Sohel Rana: Woodhead Publishing (2016).
  2. G. Sun, X. Li, Y. Qu, X. Wang, H. Yan and Y. Zhang: Mater. Lett., 62 (2008) 703. https://doi.org/10.1016/j.matlet.2007.06.035
  3. S. R. Bakshi, D. Lahiri and A. Agarwal: Int. Mater. Rev., 55 (2010) 41. https://doi.org/10.1179/095066009X12572530170543
  4. A. R. P. Singh, J. Y. Hwang, T. W. Scharf, J. Tiley and R. Banerjee: Mater. Sci. Technol., 26 (2010) 1393. https://doi.org/10.1179/174328409X411899
  5. S. W. Kim, W. S. Chung, K. S. Sohn, C. Y. Son and S. Lee: Korean J. Met. Mater., 47 (2009) 50.
  6. K. T. Kim, S. I. Cha, S. H. Hong and S. H. Hong: Mater. Sci. Eng. A, 430 (2006) 27. https://doi.org/10.1016/j.msea.2006.04.085
  7. L. S. Tang and M. Mariatti: Polym. Plast. Technol. Eng., 48 (2009) 614. https://doi.org/10.1080/03602550902824457
  8. Y. Wang, Y. Gao, L. Sun, Y. Li, B. Zheng and W. Zhai: Results Phys., 7 (2016) 263. https://doi.org/10.1016/j.rinp.2016.12.041
  9. C. H. Hager, J. Sanders, S. Sharma and A. A. Voevodin: Wear, 267 (2009)1470. https://doi.org/10.1016/j.wear.2009.03.023
  10. S. K. Singh, A. K. Yadav, M. J. Akhtar and K. K. Kar: Adv. Mater. Proc., 2 (2017) 2. https://doi.org/10.5185/amp.2017/102
  11. K. Sedlackova, P. Lobotka, I. Vavra and G. Radnoczi: Carbon, 43 (2005) 2192. https://doi.org/10.1016/j.carbon.2005.03.035
  12. Y. Yunasfi and W. A. Adi: Int. J. Technol., 3 (2016) 479. https://doi.org/10.14716/ijtech.v7i3.2826
  13. Q. Li, G. Z. Zeng, W. F. Zhao and G. H. Chen: Synth. Met., 160 (2010) 200. https://doi.org/10.1016/j.synthmet.2009.09.029
  14. A. Liu, G. E. Welsch, R. L. Mullen and D. Hazony: Metall. Mater. Trans. A, 37 (2006) 2849. https://doi.org/10.1007/BF02586117
  15. Z. Ren, N. Meng, K. Shehzad, Y. Xu, S. Qu, B. Yu and J. K. Luo: Nanotechnol., 26 (2015) 065706. https://doi.org/10.1088/0957-4484/26/6/065706
  16. X. Xu, Z. D. Cui, S. L. Zhu, Y. Q. Liang and X. J. Yang: Surf. Coat. Technol., 240 (2014) 425. https://doi.org/10.1016/j.surfcoat.2013.12.070
  17. H. Zhao, L. Liu, W. Hu and B. Shen: Mater. Des., 28 (2007) 1374. https://doi.org/10.1016/j.matdes.2006.01.001
  18. Y. Yunasfi and W. A. Adi: Int. J. Technol., 3 (2016) 479. https://doi.org/10.14716/ijtech.v7i3.2826
  19. D. V. Dudina, A. V. Ukhina, B. B. Bokhonov, V. I. Mali, A. G. Anisimov, N. V. Bulina and I. N. Skovorodin: Sci. Sinter., 47 (2015) 237. https://doi.org/10.2298/SOS1503237D
  20. L. H. Bac, J. S. Kim and J. C. Kim: Res. Chem. Intermed., 36 (2010) 795. https://doi.org/10.1007/s11164-010-0183-9
  21. C. Cho, Y. C. Ha, C. Kang, Y. S. Jin and G. H. Rim: J. Korean Phy. Soc., 57 (2010) 1807. https://doi.org/10.3938/jkps.57.1807
  22. S. Yamanaka, R. Gonda, A. Kawasaki, H. Sakamoto, Y. Mekuchi, M. Kuno and T. Tsukada: Mater. Trans., 48 (2007) 2506. https://doi.org/10.2320/matertrans.MRA2007084
  23. T. Borkar, J. Hwang, J. Y. Hwang, T. W. Scharf, J. Tiley, S. H. Hong and R. Banerjee: J. Mater. Res., 29 (2014) 761. https://doi.org/10.1557/jmr.2014.53
  24. J. Y. Hwang, B. K. Lim, J. Tiley, R. Banerjee and S. H. Hong: Carbon, 57 (2013) 282. https://doi.org/10.1016/j.carbon.2013.01.075
  25. T. Borkar, H. Mohseni, J. Hwang, T. W. Scharf, J. S. Tiley, S. H. Hong and R. Banerjee: J. Alloys Compd., 646 (2015) 135. https://doi.org/10.1016/j.jallcom.2015.06.013
  26. S. I. Cha, K. T. Kim, S. N. Arshad, C. B. Mo and S. H. Hong: Adv. Mater., 17 (2005) 1377. https://doi.org/10.1002/adma.200401933
  27. S. Suarez, F. Lasserre and F. Mucklich: Mater. Sci. Eng. A, 587 (201) 381. https://doi.org/10.1016/j.msea.2013.08.058
  28. A. Agarwal, S. R. Bakshi and D. Lahiri: CRC press (2011).
  29. S. C. Tjong: Adv. Eng. Mater., 9 (2007) 639. https://doi.org/10.1002/adem.200700106
  30. N. Hansen: Scr. Mater., 51 (2004) 801. https://doi.org/10.1016/j.scriptamat.2004.06.002
  31. T. Borkar and R. Banerjee: Mater. Sci. Eng. A, 618 (2014) 176. https://doi.org/10.1016/j.msea.2014.08.070
  32. L. Reinert, M. Zeiger, S. Suarez, V. Presser and Mucklich: Rsc Adv., 5 (2015) 95149. https://doi.org/10.1039/C5RA14310A